Study of V and Y Shape Frank-Type Stacking Faults Formation in 4H-SiC Epilayer
Nomarski optical microscopic, KOH etching and synchrotron topographic studies are presented of faint needle-like surface morphological features in 4H-SiC homoepitaxial layers. Grazing incidence synchrotron white beam x-ray topographs show V shaped features which transmission topographs reveal to enc...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2014-02, Vol.778-780, p.332-337 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nomarski optical microscopic, KOH etching and synchrotron topographic studies are presented of faint needle-like surface morphological features in 4H-SiC homoepitaxial layers. Grazing incidence synchrotron white beam x-ray topographs show V shaped features which transmission topographs reveal to enclose 1/4[0001] Frank-type stacking faults. Some of these V-shaped features have a tail associated with them and are referred to as Y-shaped defects. Geometric analysis of the size and shape of the V-shaped faults indicates that they are fully contained within the epilayer and appear to be nucleated at the substrate/epilayer interface. Detailed analysis shows that the positions of the V-shaped stacking faults match with the positions of c-axis threading dislocations with Burgers vectors of c or c+a in the substrate and thus appear to result from the deflection of these dislocations onto the basal plane during epilayer growth. Similarly, the Y-shaped defects match well with the substrate surface intersections of c-axis threading dislocations with Burgers vectors of c or c+a in the substrate which were deflected onto the basal plane during substrate growth. Based on the observed morphology of these defect configurations we propose a model for their formation mechanism. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.778-780.332 |