Study of V and Y Shape Frank-Type Stacking Faults Formation in 4H-SiC Epilayer

Nomarski optical microscopic, KOH etching and synchrotron topographic studies are presented of faint needle-like surface morphological features in 4H-SiC homoepitaxial layers. Grazing incidence synchrotron white beam x-ray topographs show V shaped features which transmission topographs reveal to enc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2014-02, Vol.778-780, p.332-337
Hauptverfasser: Yang, Yu, Raghothamachar, Balaji, Zhang, Jie, Mueller, Stephan G., Hansen, Darren M., Wu, Fang Zhen, Thomas, Bernd, Sanchez, Edward, Dudley, Michael, Wang, Huan Huan, Chung, Gil Yong, Loboda, Mark J., Byrapa, Sha Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nomarski optical microscopic, KOH etching and synchrotron topographic studies are presented of faint needle-like surface morphological features in 4H-SiC homoepitaxial layers. Grazing incidence synchrotron white beam x-ray topographs show V shaped features which transmission topographs reveal to enclose 1/4[0001] Frank-type stacking faults. Some of these V-shaped features have a tail associated with them and are referred to as Y-shaped defects. Geometric analysis of the size and shape of the V-shaped faults indicates that they are fully contained within the epilayer and appear to be nucleated at the substrate/epilayer interface. Detailed analysis shows that the positions of the V-shaped stacking faults match with the positions of c-axis threading dislocations with Burgers vectors of c or c+a in the substrate and thus appear to result from the deflection of these dislocations onto the basal plane during epilayer growth. Similarly, the Y-shaped defects match well with the substrate surface intersections of c-axis threading dislocations with Burgers vectors of c or c+a in the substrate which were deflected onto the basal plane during substrate growth. Based on the observed morphology of these defect configurations we propose a model for their formation mechanism.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.778-780.332