Magnetic Reconnection in Astrophysical and Laboratory Plasmas

Magnetic reconnection is a topological rearrangement of magnetic field that converts magnetic energy to plasma energy. Astrophysical flares, from the Earth's magnetosphere to γ-ray bursts and sawtooth crashes in laboratory plasmas, may all be powered by reconnection. Reconnection is essential f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of astronomy and astrophysics 2009-09, Vol.47 (1), p.291-332
Hauptverfasser: Zweibel, Ellen G, Yamada, Masaaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic reconnection is a topological rearrangement of magnetic field that converts magnetic energy to plasma energy. Astrophysical flares, from the Earth's magnetosphere to γ-ray bursts and sawtooth crashes in laboratory plasmas, may all be powered by reconnection. Reconnection is essential for dynamos and the large-scale restructuring known as magnetic self-organization. We review reconnection theory and evidence for it. We emphasize recent developments in two-fluid physics, and the experiments, observations, and simulations that verify two-fluid effects. We discuss novel environments such as line-tied, relativistic, and partially ionized plasmas, focusing on mechanisms that make reconnection fast, as observed. Because there is evidence that fast reconnection in astrophysics requires small-scale structure, we briefly introduce how such structure might develop. Several areas merit attention for astrophysical applications: development of a kinetic model of reconnection to enable spectroscopic predictions, better understanding of the interplay between local and global scales, the role of collisionless reconnection in large systems, and the effects of flows, including turbulence.
ISSN:0066-4146
1545-4282
DOI:10.1146/annurev-astro-082708-101726