Proton Radiography of Inertial Fusion Implosions

A distinctive way of quantitatively imaging inertial fusion implosions has resulted in the characterization of two different types of electromagnetic configurations and in the measurement of the temporal evolution of capsule size and areal density. Radiography with a pulsed, monoenergetic, isotropic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2008-02, Vol.319 (5867), p.1223-1225
Hauptverfasser: Rygg, J.R, Séguin, F.H, Li, C.K, Frenje, J.A, Manuel, M.J.-E, Petrasso, R.D, Betti, R, Delettrez, J.A, Gotchev, O.V, Knauer, J.P, Meyerhofer, D.D, Marshall, F.J, Stoeckl, C, Theobald, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A distinctive way of quantitatively imaging inertial fusion implosions has resulted in the characterization of two different types of electromagnetic configurations and in the measurement of the temporal evolution of capsule size and areal density. Radiography with a pulsed, monoenergetic, isotropic proton source reveals field structures through deflection of proton trajectories, and areal densities are quantified through the energy lost by protons while traversing the plasma. The two field structures consist of (i) many radial filaments with complex striations and bifurcations, permeating the entire field of view, of magnetic field magnitude 60 tesla and (ii) a coherent, centrally directed electric field of order 10⁹ volts per meter, seen in proximity to the capsule surface. Although the mechanism for generating these fields is unclear, their effect on implosion dynamics is potentially consequential.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1152640