Interdiffusion in nanometric Fe/Ni multilayer films

[Fe (3.1 nm)/Ni (3.3 nm)]20 multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300–430 °C was studied by x-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2015-03, Vol.33 (2)
Hauptverfasser: Liu, Jiaxing, Barmak, Katayun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 33
creator Liu, Jiaxing
Barmak, Katayun
description [Fe (3.1 nm)/Ni (3.3 nm)]20 multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300–430 °C was studied by x-ray reflectivity. From the decay of the integral intensity of the superlattice peak, the activation energy and the pre-exponential term for the effective interdiffusion coefficient were determined as to 1.06 ± 0.07 eV and 5 × 10−10 cm2/s, respectively. The relevance of the measured interdiffusion coefficient to the laboratory timescale synthesis of L10 ordered FeNi as a rare-earth free permanent magnet is discussed.
doi_str_mv 10.1116/1.4905465
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1211465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1116_1_4905465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-54f5d1fc1c67a9bd2437d0e4267df341c2f4354a489e704e8ba5c6c39c8bf85a3</originalsourceid><addsrcrecordid>eNotkDtPwzAURi0EEqEw8A8iNoa09_qRx4gqWipVsMBsOTe2MEocZLtD_z1F7fQtR590DmOPCEtErFe4lB0oWasrVqDiULVKddesgEbIiiPgLbtL6QcAOIe6YGIXso2Dd-6Q_BxKH8pgwjzZHD2VG7t69-V0GLMfzdHG0vlxSvfsxpkx2YfLLtjX5vVz_VbtP7a79cu-IsF5rpR0akBHSHVjun7gUjQDWMnrZnBCInEnhZJGtp1tQNq2N4pqEh21vWuVEQv2dP6dU_Y6kc-WvmkOwVLWyBFPmifo-QxRnFOK1unf6CcTjxpB_yfRqC9JxB_YJlIH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interdiffusion in nanometric Fe/Ni multilayer films</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Jiaxing ; Barmak, Katayun</creator><creatorcontrib>Liu, Jiaxing ; Barmak, Katayun</creatorcontrib><description>[Fe (3.1 nm)/Ni (3.3 nm)]20 multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300–430 °C was studied by x-ray reflectivity. From the decay of the integral intensity of the superlattice peak, the activation energy and the pre-exponential term for the effective interdiffusion coefficient were determined as to 1.06 ± 0.07 eV and 5 × 10−10 cm2/s, respectively. The relevance of the measured interdiffusion coefficient to the laboratory timescale synthesis of L10 ordered FeNi as a rare-earth free permanent magnet is discussed.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.4905465</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2015-03, Vol.33 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-54f5d1fc1c67a9bd2437d0e4267df341c2f4354a489e704e8ba5c6c39c8bf85a3</citedby><cites>FETCH-LOGICAL-c322t-54f5d1fc1c67a9bd2437d0e4267df341c2f4354a489e704e8ba5c6c39c8bf85a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1211465$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jiaxing</creatorcontrib><creatorcontrib>Barmak, Katayun</creatorcontrib><title>Interdiffusion in nanometric Fe/Ni multilayer films</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>[Fe (3.1 nm)/Ni (3.3 nm)]20 multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300–430 °C was studied by x-ray reflectivity. From the decay of the integral intensity of the superlattice peak, the activation energy and the pre-exponential term for the effective interdiffusion coefficient were determined as to 1.06 ± 0.07 eV and 5 × 10−10 cm2/s, respectively. The relevance of the measured interdiffusion coefficient to the laboratory timescale synthesis of L10 ordered FeNi as a rare-earth free permanent magnet is discussed.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAURi0EEqEw8A8iNoa09_qRx4gqWipVsMBsOTe2MEocZLtD_z1F7fQtR590DmOPCEtErFe4lB0oWasrVqDiULVKddesgEbIiiPgLbtL6QcAOIe6YGIXso2Dd-6Q_BxKH8pgwjzZHD2VG7t69-V0GLMfzdHG0vlxSvfsxpkx2YfLLtjX5vVz_VbtP7a79cu-IsF5rpR0akBHSHVjun7gUjQDWMnrZnBCInEnhZJGtp1tQNq2N4pqEh21vWuVEQv2dP6dU_Y6kc-WvmkOwVLWyBFPmifo-QxRnFOK1unf6CcTjxpB_yfRqC9JxB_YJlIH</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Liu, Jiaxing</creator><creator>Barmak, Katayun</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20150301</creationdate><title>Interdiffusion in nanometric Fe/Ni multilayer films</title><author>Liu, Jiaxing ; Barmak, Katayun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-54f5d1fc1c67a9bd2437d0e4267df341c2f4354a489e704e8ba5c6c39c8bf85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiaxing</creatorcontrib><creatorcontrib>Barmak, Katayun</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiaxing</au><au>Barmak, Katayun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdiffusion in nanometric Fe/Ni multilayer films</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>33</volume><issue>2</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><abstract>[Fe (3.1 nm)/Ni (3.3 nm)]20 multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300–430 °C was studied by x-ray reflectivity. From the decay of the integral intensity of the superlattice peak, the activation energy and the pre-exponential term for the effective interdiffusion coefficient were determined as to 1.06 ± 0.07 eV and 5 × 10−10 cm2/s, respectively. The relevance of the measured interdiffusion coefficient to the laboratory timescale synthesis of L10 ordered FeNi as a rare-earth free permanent magnet is discussed.</abstract><cop>United States</cop><doi>10.1116/1.4905465</doi></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2015-03, Vol.33 (2)
issn 0734-2101
1520-8559
language eng
recordid cdi_osti_scitechconnect_1211465
source AIP Journals Complete; Alma/SFX Local Collection
title Interdiffusion in nanometric Fe/Ni multilayer films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdiffusion%20in%20nanometric%20Fe/Ni%20multilayer%20films&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Liu,%20Jiaxing&rft.date=2015-03-01&rft.volume=33&rft.issue=2&rft.issn=0734-2101&rft.eissn=1520-8559&rft_id=info:doi/10.1116/1.4905465&rft_dat=%3Ccrossref_osti_%3E10_1116_1_4905465%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true