Interdiffusion in nanometric Fe/Ni multilayer films
[Fe (3.1 nm)/Ni (3.3 nm)]20 multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300–430 °C was studied by x-...
Gespeichert in:
Veröffentlicht in: | Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2015-03, Vol.33 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Fe (3.1 nm)/Ni (3.3 nm)]20 multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300–430 °C was studied by x-ray reflectivity. From the decay of the integral intensity of the superlattice peak, the activation energy and the pre-exponential term for the effective interdiffusion coefficient were determined as to 1.06 ± 0.07 eV and 5 × 10−10 cm2/s, respectively. The relevance of the measured interdiffusion coefficient to the laboratory timescale synthesis of L10 ordered FeNi as a rare-earth free permanent magnet is discussed. |
---|---|
ISSN: | 0734-2101 1520-8559 |
DOI: | 10.1116/1.4905465 |