The importance of carbon fiber to polymer additive manufacturing

Additive manufacturing (AM) holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit the widespread adoption of this technology. First, production rates are extremely low. Second, the physical size of the parts is generally small, less than a cubic foot....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2014-09, Vol.29 (17), p.1893-1898
Hauptverfasser: Love, Lonnie J., Kunc, Vlastamil, Rios, Orlando, Duty, Chad E., Elliott, Amelia M., Post, Brian K., Smith, Rachel J., Blue, Craig A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Additive manufacturing (AM) holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit the widespread adoption of this technology. First, production rates are extremely low. Second, the physical size of the parts is generally small, less than a cubic foot. Third, the mechanical properties of the polymer parts are generally poor, limiting the potential for direct part replacement and functional use of the polymer components. This article describes various ways in which carbon fibers (CFs) can be used to address these fundamental hurdles. First, CF-reinforced polymers developed for AM have demonstrated specific strengths approaching aerospace-quality aluminum. Second, CF additions can radically reduce the distortion and warping of the material during deposition, which enables large-scale, out-of-the-oven, high deposition rate manufacturing. Finally, the complementary nature of CF technology and AM is discussed, showing how merging the two manufacturing processes enables the construction of complex components that would not be possible with either technology alone.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2014.212