Ga lithography in sputtered niobium for superconductive micro and nanowires

This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-08, Vol.105 (7)
Hauptverfasser: Henry, M. David, Wolfley, Steve, Monson, Todd, Lewis, Rupert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 μm by 10 μm and 100 μm by 100 μm, demonstrate that doses above than 7.5 × 1015 cm−2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 μm long connected to 50 μm wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature (Tc) = 7.7 K was measured using a magnetic properties measurement system. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4893446