Identifying structural flow defects in disordered solids using machine-learning methods

We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-03, Vol.114 (10), p.108001-108001, Article 108001
Hauptverfasser: Cubuk, E D, Schoenholz, S S, Rieser, J M, Malone, B D, Rottler, J, Durian, D J, Kaxiras, E, Liu, A J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108001
container_issue 10
container_start_page 108001
container_title Physical review letters
container_volume 114
creator Cubuk, E D
Schoenholz, S S
Rieser, J M
Malone, B D
Rottler, J
Durian, D J
Kaxiras, E
Liu, A J
description We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.
doi_str_mv 10.1103/physrevlett.114.108001
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1180061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1667958290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-8356a6a3aae222fe03530fe5e090c339427627345e1c7bca39051d52b596903c3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7jj6F5bGk5deK8kk6Rxl8WNhYEUUjyGTVDuRns6YSq_Mvzfr7Hr1FHh53lRRD2OXHK44B_n2uD9RwbsJa23B5orDAMCfsBUHY3vToqdsBSB5bwHMBXtB9BMaIfTwnF0INXBltVmx7zcR55rGU5p_dFTLEupS_NSNU_7dRRwxVOrS3MVEuUQsGDvKU4rULXRfOfiwTzP2E_oy_w2w7nOkl-zZ6CfCVw_vmn378P7r9ad-e_vx5vrdtg9KDrUfpNJee-k9CiFGBKkkjKgQLAQp7UYYLYzcKOTB7IKXFhSPSuza9hZkkGv2-vxvppochVQx7EOe57a447wdRfMGvTlDx5J_LUjVHRIFnCY_Y17IcTNobgdjzP9RrY1Vg2jD10yf0VAyNRmjO5Z08OXkOLh7Se5zk_QF77ZNUgs27iypFS8fZiy7A8Z_tUcr8g82npBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667958290</pqid></control><display><type>article</type><title>Identifying structural flow defects in disordered solids using machine-learning methods</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Cubuk, E D ; Schoenholz, S S ; Rieser, J M ; Malone, B D ; Rottler, J ; Durian, D J ; Kaxiras, E ; Liu, A J</creator><creatorcontrib>Cubuk, E D ; Schoenholz, S S ; Rieser, J M ; Malone, B D ; Rottler, J ; Durian, D J ; Kaxiras, E ; Liu, A J</creatorcontrib><description>We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.114.108001</identifier><identifier>PMID: 25815967</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Compressing ; Defects ; Dynamics ; Glass transition temperature ; Pillars ; Rest ; Three dimensional ; Two dimensional</subject><ispartof>Physical review letters, 2015-03, Vol.114 (10), p.108001-108001, Article 108001</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-8356a6a3aae222fe03530fe5e090c339427627345e1c7bca39051d52b596903c3</citedby><cites>FETCH-LOGICAL-c538t-8356a6a3aae222fe03530fe5e090c339427627345e1c7bca39051d52b596903c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25815967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1180061$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cubuk, E D</creatorcontrib><creatorcontrib>Schoenholz, S S</creatorcontrib><creatorcontrib>Rieser, J M</creatorcontrib><creatorcontrib>Malone, B D</creatorcontrib><creatorcontrib>Rottler, J</creatorcontrib><creatorcontrib>Durian, D J</creatorcontrib><creatorcontrib>Kaxiras, E</creatorcontrib><creatorcontrib>Liu, A J</creatorcontrib><title>Identifying structural flow defects in disordered solids using machine-learning methods</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.</description><subject>Compressing</subject><subject>Defects</subject><subject>Dynamics</subject><subject>Glass transition temperature</subject><subject>Pillars</subject><subject>Rest</subject><subject>Three dimensional</subject><subject>Two dimensional</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMo7jj6F5bGk5deK8kk6Rxl8WNhYEUUjyGTVDuRns6YSq_Mvzfr7Hr1FHh53lRRD2OXHK44B_n2uD9RwbsJa23B5orDAMCfsBUHY3vToqdsBSB5bwHMBXtB9BMaIfTwnF0INXBltVmx7zcR55rGU5p_dFTLEupS_NSNU_7dRRwxVOrS3MVEuUQsGDvKU4rULXRfOfiwTzP2E_oy_w2w7nOkl-zZ6CfCVw_vmn378P7r9ad-e_vx5vrdtg9KDrUfpNJee-k9CiFGBKkkjKgQLAQp7UYYLYzcKOTB7IKXFhSPSuza9hZkkGv2-vxvppochVQx7EOe57a447wdRfMGvTlDx5J_LUjVHRIFnCY_Y17IcTNobgdjzP9RrY1Vg2jD10yf0VAyNRmjO5Z08OXkOLh7Se5zk_QF77ZNUgs27iypFS8fZiy7A8Z_tUcr8g82npBQ</recordid><startdate>20150309</startdate><enddate>20150309</enddate><creator>Cubuk, E D</creator><creator>Schoenholz, S S</creator><creator>Rieser, J M</creator><creator>Malone, B D</creator><creator>Rottler, J</creator><creator>Durian, D J</creator><creator>Kaxiras, E</creator><creator>Liu, A J</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150309</creationdate><title>Identifying structural flow defects in disordered solids using machine-learning methods</title><author>Cubuk, E D ; Schoenholz, S S ; Rieser, J M ; Malone, B D ; Rottler, J ; Durian, D J ; Kaxiras, E ; Liu, A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-8356a6a3aae222fe03530fe5e090c339427627345e1c7bca39051d52b596903c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressing</topic><topic>Defects</topic><topic>Dynamics</topic><topic>Glass transition temperature</topic><topic>Pillars</topic><topic>Rest</topic><topic>Three dimensional</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cubuk, E D</creatorcontrib><creatorcontrib>Schoenholz, S S</creatorcontrib><creatorcontrib>Rieser, J M</creatorcontrib><creatorcontrib>Malone, B D</creatorcontrib><creatorcontrib>Rottler, J</creatorcontrib><creatorcontrib>Durian, D J</creatorcontrib><creatorcontrib>Kaxiras, E</creatorcontrib><creatorcontrib>Liu, A J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cubuk, E D</au><au>Schoenholz, S S</au><au>Rieser, J M</au><au>Malone, B D</au><au>Rottler, J</au><au>Durian, D J</au><au>Kaxiras, E</au><au>Liu, A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying structural flow defects in disordered solids using machine-learning methods</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-03-09</date><risdate>2015</risdate><volume>114</volume><issue>10</issue><spage>108001</spage><epage>108001</epage><pages>108001-108001</pages><artnum>108001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>25815967</pmid><doi>10.1103/physrevlett.114.108001</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2015-03, Vol.114 (10), p.108001-108001, Article 108001
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1180061
source APS: American Physical Society E-Journals (Physics)
subjects Compressing
Defects
Dynamics
Glass transition temperature
Pillars
Rest
Three dimensional
Two dimensional
title Identifying structural flow defects in disordered solids using machine-learning methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20structural%20flow%20defects%20in%20disordered%20solids%20using%20machine-learning%20methods&rft.jtitle=Physical%20review%20letters&rft.au=Cubuk,%20E%20D&rft.date=2015-03-09&rft.volume=114&rft.issue=10&rft.spage=108001&rft.epage=108001&rft.pages=108001-108001&rft.artnum=108001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.114.108001&rft_dat=%3Cproquest_osti_%3E1667958290%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667958290&rft_id=info:pmid/25815967&rfr_iscdi=true