Identifying structural flow defects in disordered solids using machine-learning methods

We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-03, Vol.114 (10), p.108001-108001, Article 108001
Hauptverfasser: Cubuk, E D, Schoenholz, S S, Rieser, J M, Malone, B D, Rottler, J, Durian, D J, Kaxiras, E, Liu, A J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.114.108001