Scale dependence of entrainment-mixing mechanisms in cumulus clouds

This work empirically examines the dependence of entrainment‐mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2014-12, Vol.119 (24), p.13,877-13,890
Hauptverfasser: Lu, Chunsong, Liu, Yangang, Niu, Shengjie, Endo, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work empirically examines the dependence of entrainment‐mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale‐dependent parameterization for the entrainment‐mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet‐free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet‐free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet‐free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment‐mixing processes in atmospheric models. Key Points Entrainment‐mixing tends to be more inhomogeneous over a longer averaging scaleThe scale dependence is related to three factors, e.g., filament propertiesThe results could be used in scale‐dependent parameterizations for mixing
ISSN:2169-897X
2169-8996
2169-8996
DOI:10.1002/2014JD022265