Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties
Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K −1 m −1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phon...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2014-12, Vol.16 (47), p.2571-2579 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K
−1
m
−1
at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, 25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, 25 W K
−1
m
−1
, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at
ZT
0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.
Effects of nanostructuration on bulk nanocrystalline doped silicon: increase in the Debye level resulting in a significant reduction in the speed of sound and significantly decreased lattice thermal conductivity. |
---|---|
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/c3cp53749h |