Natural Organic Matter Enhanced Mobility of Nano Zerovalent Iron

Column studies showed that the mobility of nanometer-sized zerovalent iron (nZVI) through granular media is greatly increased in the presence of natural organic matter (NOM). At NOM concentrations of 20 mg/L or greater, the nZVI was highly mobile during transport experiments in 0.15-m long columns p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2009-07, Vol.43 (14), p.5455-5460
Hauptverfasser: Johnson, Richard L, Johnson, Graham O’Brien, Nurmi, James T, Tratnyek, Paul G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Column studies showed that the mobility of nanometer-sized zerovalent iron (nZVI) through granular media is greatly increased in the presence of natural organic matter (NOM). At NOM concentrations of 20 mg/L or greater, the nZVI was highly mobile during transport experiments in 0.15-m long columns packed with medium sand. Below 20 mg/L NOM, mobility of the nZVI was less; however, even at 2 mg/L the nZVI showed significantly increased mobility compared to the no-NOM case. Spectrophotometric and aggregation studies of nZVI suspensions in the presence of NOM suggest that sorption of the NOM onto the nZVI, resulting in a reduced sticking coefficient, may be the primary mechanism of enhanced mobility. Modeling the mobility of nZVI in porous media with filtration theory is challenging, but calibration of a simple model with experimental results from the column experiments reported here allows simulation of transport distances during injection. The simulation results show that the increased mobility due to NOM combined with the decrease in mobility due to decreased velocity with distance from an injection well could produce an injection zone that is wide enough to be useful for remediation but small enough to avoid reaching unwanted receptors.
ISSN:0013-936X
1520-5851
DOI:10.1021/es900474f