Behaviors of Fe, Zn, and Ga Substitution in CuInS2 Nanoparticles Probed with Anomalous X‑ray Diffraction
We synthesized CuInS2 nanoparticles containing up to 20% Fe, Zn, and Ga to study alloying in photovoltaic absorber materials with anomalous X-ray diffraction. The colloidal synthesis allowed for detailed analysis of complex quaternary compounds. Anomalous X-ray diffraction (AXRD) was used to clarify...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2013-02, Vol.25 (3), p.320-325 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We synthesized CuInS2 nanoparticles containing up to 20% Fe, Zn, and Ga to study alloying in photovoltaic absorber materials with anomalous X-ray diffraction. The colloidal synthesis allowed for detailed analysis of complex quaternary compounds. Anomalous X-ray diffraction (AXRD) was used to clarify the elemental distribution between phases. Additionally, optical spectroscopy and X-ray diffraction were used to probe the band gap and crystal phase, respectively. Substitution of Zn into wurtzite CuInS2 produced a controllable increase in the optical band gap, whereas Ga did not substitute into wurtzite CuInS2, producing no band gap change. Secondary phase precipitation of a chalcopyrite phase was observed with Fe substitution, along with a decrease of the optical band gap. This work demonstrates progress in compositional and structural analysis of quaternary chalcogenide materials using AXRD. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm302794t |