Calibrating building energy models using supercomputer trained machine learning agents

SUMMARYBuilding energy modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2014-09, Vol.26 (13), p.2122-2133
Hauptverfasser: Sanyal, Jibonananda, New, Joshua, Edwards, Richard E., Parker, Lynne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARYBuilding energy modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters that have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making BEM unfeasible for smaller projects. In this paper, we describe the ‘Autotune’ research that employs machine learning algorithms to generate agents for the different kinds of standard reference buildings in the US building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers that are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost‐effective calibration of building models. Published 2014. This article is a US Government work and is in the public domain in the USA.
ISSN:1532-0626
1532-0634
DOI:10.1002/cpe.3267