Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility
The concentration of sulfur in Hanford low‐activity waste (LAW) glass melter feed will be maintained below the point where the salt accumulates on the melt surface. The allowable concentrations may range from near zero to over 2.05 wt% (of SO3 on a calcined oxide basis) depending on the composition...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2014-10, Vol.97 (10), p.3135-3142 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concentration of sulfur in Hanford low‐activity waste (LAW) glass melter feed will be maintained below the point where the salt accumulates on the melt surface. The allowable concentrations may range from near zero to over 2.05 wt% (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have traditionally been placed on sulfur loading in melter feed, which in turn significantly increases the amount of LAW glass that will be produced. Crucible‐scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. An empirical model was developed to predict the solubility of SO3 in glass based on 253 simulated Hanford LAW glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the maximum amount of sulfur in melter feed that did not form a salt layer in 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options (e.g., scale of supplemental LAW treatment facility, and pretreatment facility performance requirements). The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that increase sulfur solubility most are Li2O > V2O5 > CaO ≈ P2O5 > Na2O ≈ B2O3 > K2O. The components that decrease sulfur solubility most are Cl > Cr2O3 > Al2O3 > ZrO2 ≈ SnO2 > Others (i.e., the sum of minor components) ≈SiO2. The order of component effects is similar to previous literature data, in most cases. |
---|---|
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/jace.13125 |