High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation

The primary challenge in solid-state polymer electrolyte membranes (PEMs) is to enhance properties, such as modulus, toughness, and high temperature stability, without sacrificing ionic conductivity. We report a remarkably facile one-pot synthetic strategy based on polymerization-induced phase separ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-01, Vol.14 (1), p.122-126
Hauptverfasser: Schulze, Morgan W, McIntosh, Lucas D, Hillmyer, Marc A, Lodge, Timothy P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary challenge in solid-state polymer electrolyte membranes (PEMs) is to enhance properties, such as modulus, toughness, and high temperature stability, without sacrificing ionic conductivity. We report a remarkably facile one-pot synthetic strategy based on polymerization-induced phase separation (PIPS) to generate nanostructured PEMs that exhibit an unprecedented combination of high modulus and ionic conductivity. Simple heating of a poly(ethylene oxide) macromolecular chain transfer agent dissolved in a mixture of ionic liquid, styrene and divinylbenzene, leads to a bicontinuous PEM comprising interpenetrating nanodomains of highly cross-linked polystyrene and poly(ethylene oxide)/ionic liquid. Ionic conductivities higher than the 1 mS/cm benchmark were achieved in samples with an elastic modulus approaching 1 GPa at room temperature. Crucially, these samples are robust solids above 100 °C, where the conductivity is significantly higher. This strategy holds tremendous potential to advance lithium-ion battery technology by enabling the use of lithium metal anodes or to serve as membranes in high-temperature fuel cells.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl4034818