Mechanical Control of Electroresistive Switching

Hysteretic metal–insulator transitions (MIT) mediated by ionic dynamics or ferroic phase transitions underpin emergent applications for nonvolatile memories and logic devices. The vast majority of applications and studies have explored the MIT coupled to the electric field or temperarture. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2013-09, Vol.13 (9), p.4068-4074
Hauptverfasser: Kim, Yunseok, Kelly, Simon J, Morozovska, Anna, Rahani, Ehsan Kabiri, Strelcov, Evgheni, Eliseev, Eugene, Jesse, Stephen, Biegalski, Michael D, Balke, Nina, Benedek, Nicole, Strukov, Dmitri, Aarts, J, Hwang, Inrok, Oh, Sungtaek, Choi, Jin Sik, Choi, Taekjib, Park, Bae Ho, Shenoy, Vivek B, Maksymovych, Peter, Kalinin, Sergei V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hysteretic metal–insulator transitions (MIT) mediated by ionic dynamics or ferroic phase transitions underpin emergent applications for nonvolatile memories and logic devices. The vast majority of applications and studies have explored the MIT coupled to the electric field or temperarture. Here, we argue that MIT coupled to ionic dynamics should be controlled by mechanical stimuli, the behavior we refer to as the piezochemical effect. We verify this effect experimentally and demonstrate that it allows both studying materials physics and enabling novel data storage technologies with mechanical writing and current-based readout.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl401411r