Microstructural evolution of U(Mo)–Al(Si) dispersion fuel under irradiation – Destructive analyses of the LEONIDAS E-FUTURE plates
Several irradiation experiments have confirmed the positive effect of adding Si to the matrix of an U(Mo) dispersion fuel plate on its in-pile irradiation behavior. E-FUTURE, the first experiment of the LEONIDAS program, was performed to select an optimum Si concentration and fuel plate heat treatme...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2013-10, Vol.441 (1-3), p.439-448 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several irradiation experiments have confirmed the positive effect of adding Si to the matrix of an U(Mo) dispersion fuel plate on its in-pile irradiation behavior. E-FUTURE, the first experiment of the LEONIDAS program, was performed to select an optimum Si concentration and fuel plate heat treatment parameters for further qualification. It consisted of the irradiation of 4 distinct (regarding Si content and heat treatments), full size flat fuel plates in the BR2 reactor under bounding conditions (470W/cm2 peak BOL power, ∼70% peak burn-up). After the irradiation, the E-FUTURE plates were examined non-destructively and found to have pillowed in the highest burn-up positions. The destructive post-irradiation examination confirmed that the fuel evolves in a stable way up to a burn-up of 60%235U. Even in the deformed area (pillow) the U(Mo) fuel itself shows stable behavior and remaining matrix material was present. From the calculation of the volume fractions, the positive effect of a higher Si amount added to the matrix and the higher annealing temperature can be derived. |
---|---|
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/j.jnucmat.2013.06.027 |