Microstructural evolution of U(Mo)–Al(Si) dispersion fuel under irradiation – Destructive analyses of the LEONIDAS E-FUTURE plates

Several irradiation experiments have confirmed the positive effect of adding Si to the matrix of an U(Mo) dispersion fuel plate on its in-pile irradiation behavior. E-FUTURE, the first experiment of the LEONIDAS program, was performed to select an optimum Si concentration and fuel plate heat treatme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2013-10, Vol.441 (1-3), p.439-448
Hauptverfasser: Leenaers, A., Van den Berghe, S., Van Eyken, J., Koonen, E., Charollais, F., Lemoine, P., Calzavara, Y., Guyon, H., Jarousse, C., Geslin, D., Wachs, D., Keiser, D., Robinson, A., Hofman, G., Kim, Y.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several irradiation experiments have confirmed the positive effect of adding Si to the matrix of an U(Mo) dispersion fuel plate on its in-pile irradiation behavior. E-FUTURE, the first experiment of the LEONIDAS program, was performed to select an optimum Si concentration and fuel plate heat treatment parameters for further qualification. It consisted of the irradiation of 4 distinct (regarding Si content and heat treatments), full size flat fuel plates in the BR2 reactor under bounding conditions (470W/cm2 peak BOL power, ∼70% peak burn-up). After the irradiation, the E-FUTURE plates were examined non-destructively and found to have pillowed in the highest burn-up positions. The destructive post-irradiation examination confirmed that the fuel evolves in a stable way up to a burn-up of 60%235U. Even in the deformed area (pillow) the U(Mo) fuel itself shows stable behavior and remaining matrix material was present. From the calculation of the volume fractions, the positive effect of a higher Si amount added to the matrix and the higher annealing temperature can be derived.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2013.06.027