Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation

We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2013-07, Vol.28 (13), p.1799-1812
Hauptverfasser: Beyerlein, Irene J., Mara, Nathan A., Carpenter, John S., Nizolek, Thomas, Mook, William M., Wynn, Thomas A., McCabe, Rodney J., Mayeur, Jason R., Kang, Keonwook, Zheng, Shijian, Wang, Jian, Pollock, Tresa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1812
container_issue 13
container_start_page 1799
container_title Journal of materials research
container_volume 28
creator Beyerlein, Irene J.
Mara, Nathan A.
Carpenter, John S.
Nizolek, Thomas
Mook, William M.
Wynn, Thomas A.
McCabe, Rodney J.
Mayeur, Jason R.
Kang, Keonwook
Zheng, Shijian
Wang, Jian
Pollock, Tresa M.
description We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa).
doi_str_mv 10.1557/jmr.2013.21
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1105424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2013_21</cupid><sourcerecordid>1429874031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-5a0a87582cf2944c82aed8ba5dee82e35c4b500aac7c726b160ac849ce3db6e13</originalsourceid><addsrcrecordid>eNp9kdGO1CAUhonRxHH1yhcgemPidgQKLb00E3U32eiNXpNTejrD2MIIdJN5EN9XmtlEY4xXXPCd78D_E_KSsy1Xqn13nONWMF5vBX9ENoJJWalaNI_JhmktK9Fx-ZQ8S-nIGFeslRvy89ZnjCNYrIbo7tHT2dkYUo6LzUtEOuA9TuE0o88U_ECXKUegB7c_0AKh3-cDDSPtl-k79eB_Tw50t1SfezqXCTfBGWOiI_TRWcjlsj_TVNRlw2mClJ0tm8YQZ8gu-OfkyQhTwhcP5xX59vHD191Ndffl0-3u_V1lZSNypYCBbpUWdhSdlFYLwEH3oAZELbBWVvaKMQDb2lY0PW8YWC07i_XQN8jrK_Lq4i3PdiZZl9EebPAebTacMyWFLNCbC3SK4ceCKZvZJYvTBB7DkgyXotOtZPXqe_0XegxL9OULhtetUJ0suRfq7YVag04RR3OKboZ4NpyZtUdTejRrj0aszusLnQrl9xj_cP4Trx7kMJewhz3-n_8F4i6yAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372594015</pqid></control><display><type>article</type><title>Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Beyerlein, Irene J. ; Mara, Nathan A. ; Carpenter, John S. ; Nizolek, Thomas ; Mook, William M. ; Wynn, Thomas A. ; McCabe, Rodney J. ; Mayeur, Jason R. ; Kang, Keonwook ; Zheng, Shijian ; Wang, Jian ; Pollock, Tresa M.</creator><creatorcontrib>Beyerlein, Irene J. ; Mara, Nathan A. ; Carpenter, John S. ; Nizolek, Thomas ; Mook, William M. ; Wynn, Thomas A. ; McCabe, Rodney J. ; Mayeur, Jason R. ; Kang, Keonwook ; Zheng, Shijian ; Wang, Jian ; Pollock, Tresa M. ; Center for Materials at Irradiation and Mechanical Extremes (CMIME) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa).</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2013.21</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Atomic structure ; Biomaterials ; Composite materials ; Copper ; Deformation ; Inorganic Chemistry ; Interfaces ; Materials Engineering ; Materials research ; Materials Science ; Mathematical models ; Micrometers ; Microstructure ; Multilayers ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; nuclear (including radiation effects), defects, mechanical behavior, materials and chemistry by design, synthesis (novel materials), synthesis (scalable processing) ; Plastic deformation ; Rapid prototyping ; Shear strength ; Studies</subject><ispartof>Journal of materials research, 2013-07, Vol.28 (13), p.1799-1812</ispartof><rights>Copyright © Materials Research Society 2013</rights><rights>The Materials Research Society 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-5a0a87582cf2944c82aed8ba5dee82e35c4b500aac7c726b160ac849ce3db6e13</citedby><cites>FETCH-LOGICAL-c462t-5a0a87582cf2944c82aed8ba5dee82e35c4b500aac7c726b160ac849ce3db6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2013.21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291413000216/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,41464,42533,51294,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1105424$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Mara, Nathan A.</creatorcontrib><creatorcontrib>Carpenter, John S.</creatorcontrib><creatorcontrib>Nizolek, Thomas</creatorcontrib><creatorcontrib>Mook, William M.</creatorcontrib><creatorcontrib>Wynn, Thomas A.</creatorcontrib><creatorcontrib>McCabe, Rodney J.</creatorcontrib><creatorcontrib>Mayeur, Jason R.</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><creatorcontrib>Zheng, Shijian</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Center for Materials at Irradiation and Mechanical Extremes (CMIME)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa).</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Atomic structure</subject><subject>Biomaterials</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Deformation</subject><subject>Inorganic Chemistry</subject><subject>Interfaces</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Micrometers</subject><subject>Microstructure</subject><subject>Multilayers</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>nuclear (including radiation effects), defects, mechanical behavior, materials and chemistry by design, synthesis (novel materials), synthesis (scalable processing)</subject><subject>Plastic deformation</subject><subject>Rapid prototyping</subject><subject>Shear strength</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kdGO1CAUhonRxHH1yhcgemPidgQKLb00E3U32eiNXpNTejrD2MIIdJN5EN9XmtlEY4xXXPCd78D_E_KSsy1Xqn13nONWMF5vBX9ENoJJWalaNI_JhmktK9Fx-ZQ8S-nIGFeslRvy89ZnjCNYrIbo7tHT2dkYUo6LzUtEOuA9TuE0o88U_ECXKUegB7c_0AKh3-cDDSPtl-k79eB_Tw50t1SfezqXCTfBGWOiI_TRWcjlsj_TVNRlw2mClJ0tm8YQZ8gu-OfkyQhTwhcP5xX59vHD191Ndffl0-3u_V1lZSNypYCBbpUWdhSdlFYLwEH3oAZELbBWVvaKMQDb2lY0PW8YWC07i_XQN8jrK_Lq4i3PdiZZl9EebPAebTacMyWFLNCbC3SK4ceCKZvZJYvTBB7DkgyXotOtZPXqe_0XegxL9OULhtetUJ0suRfq7YVag04RR3OKboZ4NpyZtUdTejRrj0aszusLnQrl9xj_cP4Trx7kMJewhz3-n_8F4i6yAA</recordid><startdate>20130714</startdate><enddate>20130714</enddate><creator>Beyerlein, Irene J.</creator><creator>Mara, Nathan A.</creator><creator>Carpenter, John S.</creator><creator>Nizolek, Thomas</creator><creator>Mook, William M.</creator><creator>Wynn, Thomas A.</creator><creator>McCabe, Rodney J.</creator><creator>Mayeur, Jason R.</creator><creator>Kang, Keonwook</creator><creator>Zheng, Shijian</creator><creator>Wang, Jian</creator><creator>Pollock, Tresa M.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope></search><sort><creationdate>20130714</creationdate><title>Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation</title><author>Beyerlein, Irene J. ; Mara, Nathan A. ; Carpenter, John S. ; Nizolek, Thomas ; Mook, William M. ; Wynn, Thomas A. ; McCabe, Rodney J. ; Mayeur, Jason R. ; Kang, Keonwook ; Zheng, Shijian ; Wang, Jian ; Pollock, Tresa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-5a0a87582cf2944c82aed8ba5dee82e35c4b500aac7c726b160ac849ce3db6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Atomic structure</topic><topic>Biomaterials</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Deformation</topic><topic>Inorganic Chemistry</topic><topic>Interfaces</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Micrometers</topic><topic>Microstructure</topic><topic>Multilayers</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>nuclear (including radiation effects), defects, mechanical behavior, materials and chemistry by design, synthesis (novel materials), synthesis (scalable processing)</topic><topic>Plastic deformation</topic><topic>Rapid prototyping</topic><topic>Shear strength</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Mara, Nathan A.</creatorcontrib><creatorcontrib>Carpenter, John S.</creatorcontrib><creatorcontrib>Nizolek, Thomas</creatorcontrib><creatorcontrib>Mook, William M.</creatorcontrib><creatorcontrib>Wynn, Thomas A.</creatorcontrib><creatorcontrib>McCabe, Rodney J.</creatorcontrib><creatorcontrib>Mayeur, Jason R.</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><creatorcontrib>Zheng, Shijian</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Center for Materials at Irradiation and Mechanical Extremes (CMIME)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyerlein, Irene J.</au><au>Mara, Nathan A.</au><au>Carpenter, John S.</au><au>Nizolek, Thomas</au><au>Mook, William M.</au><au>Wynn, Thomas A.</au><au>McCabe, Rodney J.</au><au>Mayeur, Jason R.</au><au>Kang, Keonwook</au><au>Zheng, Shijian</au><au>Wang, Jian</au><au>Pollock, Tresa M.</au><aucorp>Center for Materials at Irradiation and Mechanical Extremes (CMIME)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2013-07-14</date><risdate>2013</risdate><volume>28</volume><issue>13</issue><spage>1799</spage><epage>1812</epage><pages>1799-1812</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa).</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2013.21</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2013-07, Vol.28 (13), p.1799-1812
issn 0884-2914
2044-5326
language eng
recordid cdi_osti_scitechconnect_1105424
source SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete
subjects Analysis
Applied and Technical Physics
Atomic structure
Biomaterials
Composite materials
Copper
Deformation
Inorganic Chemistry
Interfaces
Materials Engineering
Materials research
Materials Science
Mathematical models
Micrometers
Microstructure
Multilayers
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
nuclear (including radiation effects), defects, mechanical behavior, materials and chemistry by design, synthesis (novel materials), synthesis (scalable processing)
Plastic deformation
Rapid prototyping
Shear strength
Studies
title Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface-driven%20microstructure%20development%20and%20ultra%20high%20strength%20of%20bulk%20nanostructured%20Cu-Nb%20multilayers%20fabricated%20by%20severe%20plastic%20deformation&rft.jtitle=Journal%20of%20materials%20research&rft.au=Beyerlein,%20Irene%20J.&rft.aucorp=Center%20for%20Materials%20at%20Irradiation%20and%20Mechanical%20Extremes%20(CMIME)&rft.date=2013-07-14&rft.volume=28&rft.issue=13&rft.spage=1799&rft.epage=1812&rft.pages=1799-1812&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2013.21&rft_dat=%3Cproquest_osti_%3E1429874031%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372594015&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2013_21&rfr_iscdi=true