Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation
We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parame...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2013-07, Vol.28 (13), p.1799-1812 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1812 |
---|---|
container_issue | 13 |
container_start_page | 1799 |
container_title | Journal of materials research |
container_volume | 28 |
creator | Beyerlein, Irene J. Mara, Nathan A. Carpenter, John S. Nizolek, Thomas Mook, William M. Wynn, Thomas A. McCabe, Rodney J. Mayeur, Jason R. Kang, Keonwook Zheng, Shijian Wang, Jian Pollock, Tresa M. |
description | We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa). |
doi_str_mv | 10.1557/jmr.2013.21 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1105424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2013_21</cupid><sourcerecordid>1429874031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-5a0a87582cf2944c82aed8ba5dee82e35c4b500aac7c726b160ac849ce3db6e13</originalsourceid><addsrcrecordid>eNp9kdGO1CAUhonRxHH1yhcgemPidgQKLb00E3U32eiNXpNTejrD2MIIdJN5EN9XmtlEY4xXXPCd78D_E_KSsy1Xqn13nONWMF5vBX9ENoJJWalaNI_JhmktK9Fx-ZQ8S-nIGFeslRvy89ZnjCNYrIbo7tHT2dkYUo6LzUtEOuA9TuE0o88U_ECXKUegB7c_0AKh3-cDDSPtl-k79eB_Tw50t1SfezqXCTfBGWOiI_TRWcjlsj_TVNRlw2mClJ0tm8YQZ8gu-OfkyQhTwhcP5xX59vHD191Ndffl0-3u_V1lZSNypYCBbpUWdhSdlFYLwEH3oAZELbBWVvaKMQDb2lY0PW8YWC07i_XQN8jrK_Lq4i3PdiZZl9EebPAebTacMyWFLNCbC3SK4ceCKZvZJYvTBB7DkgyXotOtZPXqe_0XegxL9OULhtetUJ0suRfq7YVag04RR3OKboZ4NpyZtUdTejRrj0aszusLnQrl9xj_cP4Trx7kMJewhz3-n_8F4i6yAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372594015</pqid></control><display><type>article</type><title>Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Beyerlein, Irene J. ; Mara, Nathan A. ; Carpenter, John S. ; Nizolek, Thomas ; Mook, William M. ; Wynn, Thomas A. ; McCabe, Rodney J. ; Mayeur, Jason R. ; Kang, Keonwook ; Zheng, Shijian ; Wang, Jian ; Pollock, Tresa M.</creator><creatorcontrib>Beyerlein, Irene J. ; Mara, Nathan A. ; Carpenter, John S. ; Nizolek, Thomas ; Mook, William M. ; Wynn, Thomas A. ; McCabe, Rodney J. ; Mayeur, Jason R. ; Kang, Keonwook ; Zheng, Shijian ; Wang, Jian ; Pollock, Tresa M. ; Center for Materials at Irradiation and Mechanical Extremes (CMIME) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa).</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2013.21</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Analysis ; Applied and Technical Physics ; Atomic structure ; Biomaterials ; Composite materials ; Copper ; Deformation ; Inorganic Chemistry ; Interfaces ; Materials Engineering ; Materials research ; Materials Science ; Mathematical models ; Micrometers ; Microstructure ; Multilayers ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; nuclear (including radiation effects), defects, mechanical behavior, materials and chemistry by design, synthesis (novel materials), synthesis (scalable processing) ; Plastic deformation ; Rapid prototyping ; Shear strength ; Studies</subject><ispartof>Journal of materials research, 2013-07, Vol.28 (13), p.1799-1812</ispartof><rights>Copyright © Materials Research Society 2013</rights><rights>The Materials Research Society 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-5a0a87582cf2944c82aed8ba5dee82e35c4b500aac7c726b160ac849ce3db6e13</citedby><cites>FETCH-LOGICAL-c462t-5a0a87582cf2944c82aed8ba5dee82e35c4b500aac7c726b160ac849ce3db6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2013.21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291413000216/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,41464,42533,51294,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1105424$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Mara, Nathan A.</creatorcontrib><creatorcontrib>Carpenter, John S.</creatorcontrib><creatorcontrib>Nizolek, Thomas</creatorcontrib><creatorcontrib>Mook, William M.</creatorcontrib><creatorcontrib>Wynn, Thomas A.</creatorcontrib><creatorcontrib>McCabe, Rodney J.</creatorcontrib><creatorcontrib>Mayeur, Jason R.</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><creatorcontrib>Zheng, Shijian</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Center for Materials at Irradiation and Mechanical Extremes (CMIME)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa).</description><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Atomic structure</subject><subject>Biomaterials</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Deformation</subject><subject>Inorganic Chemistry</subject><subject>Interfaces</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Micrometers</subject><subject>Microstructure</subject><subject>Multilayers</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>nuclear (including radiation effects), defects, mechanical behavior, materials and chemistry by design, synthesis (novel materials), synthesis (scalable processing)</subject><subject>Plastic deformation</subject><subject>Rapid prototyping</subject><subject>Shear strength</subject><subject>Studies</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kdGO1CAUhonRxHH1yhcgemPidgQKLb00E3U32eiNXpNTejrD2MIIdJN5EN9XmtlEY4xXXPCd78D_E_KSsy1Xqn13nONWMF5vBX9ENoJJWalaNI_JhmktK9Fx-ZQ8S-nIGFeslRvy89ZnjCNYrIbo7tHT2dkYUo6LzUtEOuA9TuE0o88U_ECXKUegB7c_0AKh3-cDDSPtl-k79eB_Tw50t1SfezqXCTfBGWOiI_TRWcjlsj_TVNRlw2mClJ0tm8YQZ8gu-OfkyQhTwhcP5xX59vHD191Ndffl0-3u_V1lZSNypYCBbpUWdhSdlFYLwEH3oAZELbBWVvaKMQDb2lY0PW8YWC07i_XQN8jrK_Lq4i3PdiZZl9EebPAebTacMyWFLNCbC3SK4ceCKZvZJYvTBB7DkgyXotOtZPXqe_0XegxL9OULhtetUJ0suRfq7YVag04RR3OKboZ4NpyZtUdTejRrj0aszusLnQrl9xj_cP4Trx7kMJewhz3-n_8F4i6yAA</recordid><startdate>20130714</startdate><enddate>20130714</enddate><creator>Beyerlein, Irene J.</creator><creator>Mara, Nathan A.</creator><creator>Carpenter, John S.</creator><creator>Nizolek, Thomas</creator><creator>Mook, William M.</creator><creator>Wynn, Thomas A.</creator><creator>McCabe, Rodney J.</creator><creator>Mayeur, Jason R.</creator><creator>Kang, Keonwook</creator><creator>Zheng, Shijian</creator><creator>Wang, Jian</creator><creator>Pollock, Tresa M.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope></search><sort><creationdate>20130714</creationdate><title>Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation</title><author>Beyerlein, Irene J. ; Mara, Nathan A. ; Carpenter, John S. ; Nizolek, Thomas ; Mook, William M. ; Wynn, Thomas A. ; McCabe, Rodney J. ; Mayeur, Jason R. ; Kang, Keonwook ; Zheng, Shijian ; Wang, Jian ; Pollock, Tresa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-5a0a87582cf2944c82aed8ba5dee82e35c4b500aac7c726b160ac849ce3db6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Atomic structure</topic><topic>Biomaterials</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Deformation</topic><topic>Inorganic Chemistry</topic><topic>Interfaces</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Micrometers</topic><topic>Microstructure</topic><topic>Multilayers</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>nuclear (including radiation effects), defects, mechanical behavior, materials and chemistry by design, synthesis (novel materials), synthesis (scalable processing)</topic><topic>Plastic deformation</topic><topic>Rapid prototyping</topic><topic>Shear strength</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Mara, Nathan A.</creatorcontrib><creatorcontrib>Carpenter, John S.</creatorcontrib><creatorcontrib>Nizolek, Thomas</creatorcontrib><creatorcontrib>Mook, William M.</creatorcontrib><creatorcontrib>Wynn, Thomas A.</creatorcontrib><creatorcontrib>McCabe, Rodney J.</creatorcontrib><creatorcontrib>Mayeur, Jason R.</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><creatorcontrib>Zheng, Shijian</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Center for Materials at Irradiation and Mechanical Extremes (CMIME)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyerlein, Irene J.</au><au>Mara, Nathan A.</au><au>Carpenter, John S.</au><au>Nizolek, Thomas</au><au>Mook, William M.</au><au>Wynn, Thomas A.</au><au>McCabe, Rodney J.</au><au>Mayeur, Jason R.</au><au>Kang, Keonwook</au><au>Zheng, Shijian</au><au>Wang, Jian</au><au>Pollock, Tresa M.</au><aucorp>Center for Materials at Irradiation and Mechanical Extremes (CMIME)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2013-07-14</date><risdate>2013</risdate><volume>28</volume><issue>13</issue><spage>1799</spage><epage>1812</epage><pages>1799-1812</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa).</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2013.21</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2013-07, Vol.28 (13), p.1799-1812 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_osti_scitechconnect_1105424 |
source | SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete |
subjects | Analysis Applied and Technical Physics Atomic structure Biomaterials Composite materials Copper Deformation Inorganic Chemistry Interfaces Materials Engineering Materials research Materials Science Mathematical models Micrometers Microstructure Multilayers Nanocomposites Nanomaterials Nanostructure Nanotechnology nuclear (including radiation effects), defects, mechanical behavior, materials and chemistry by design, synthesis (novel materials), synthesis (scalable processing) Plastic deformation Rapid prototyping Shear strength Studies |
title | Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface-driven%20microstructure%20development%20and%20ultra%20high%20strength%20of%20bulk%20nanostructured%20Cu-Nb%20multilayers%20fabricated%20by%20severe%20plastic%20deformation&rft.jtitle=Journal%20of%20materials%20research&rft.au=Beyerlein,%20Irene%20J.&rft.aucorp=Center%20for%20Materials%20at%20Irradiation%20and%20Mechanical%20Extremes%20(CMIME)&rft.date=2013-07-14&rft.volume=28&rft.issue=13&rft.spage=1799&rft.epage=1812&rft.pages=1799-1812&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2013.21&rft_dat=%3Cproquest_osti_%3E1429874031%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372594015&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2013_21&rfr_iscdi=true |