Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation
We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parame...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2013-07, Vol.28 (13), p.1799-1812 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa). |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2013.21 |