Excess specific heat in evaporated amorphous silicon

The specific heat C of e-beam evaporated amorphous silicon (a-Si) thin films prepared at various growth temperatures T(S) and thicknesses t was measured from 2 to 300 K, along with sound velocity v, shear modulus G, density n(Si), and Raman spectra. Increasing T(S) results in a more ordered amorphou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-03, Vol.110 (13), p.135901-135901, Article 135901
Hauptverfasser: Queen, D R, Liu, X, Karel, J, Metcalf, T H, Hellman, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The specific heat C of e-beam evaporated amorphous silicon (a-Si) thin films prepared at various growth temperatures T(S) and thicknesses t was measured from 2 to 300 K, along with sound velocity v, shear modulus G, density n(Si), and Raman spectra. Increasing T(S) results in a more ordered amorphous network with increases in n(Si), v, G, and a decrease in bond angle disorder. Below 20 K, an excess C is seen in films with less than full density where it is typical of an amorphous solid, with both a linear term characteristic of two-level systems (TLS) and an additional (non-Debye) T3 contribution. The excess C is found to be independent of the elastic properties but to depend strongly on density. The density dependence suggests that low energy glassy excitations can form in a-Si but only in microvoids or low density regions and are not intrinsic to the amorphous silicon network. A correlation is found between the density of TLS n0 and the excess T3 specific heat c(ex) suggesting that they have a common origin.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.110.135901