Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements
The influence of defects on the local structural, electronic, and chemical properties of a surface oxide on Cu(100) were investigated using atomic resolution three-dimensional force mapping combined with tunneling current measurements and ab initio density functional theory. Results reveal that the...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-04, Vol.87 (15), Article 155414 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of defects on the local structural, electronic, and chemical properties of a surface oxide on Cu(100) were investigated using atomic resolution three-dimensional force mapping combined with tunneling current measurements and ab initio density functional theory. Results reveal that the maximum attractive force between tip and sample occurs above the oxygen atoms; theory indicates that the tip, in this case, terminates in a Cu atom. Meanwhile, simultaneously acquired tunneling current images emphasize the positions of Cu atoms, thereby, providing species-selective contrast in the two complementary data channels. One immediate outcome is that defects due to the displacement of surface copper are exposed in the current maps, even though force maps only reflect a well-ordered oxygen sublattice. The exact nature of the defects is confirmed by the simulations, which also reveal that the arrangement of the oxygen atoms is not disrupted by the copper displacement. In addition, the experimental force maps uncover a position-dependent modulation of the attractive forces between the surface oxygen and the copper-terminated tips, which is found to reflect the surface's inhomogeneous chemical and structural environment. As a consequence, the demonstrated method has the potential to directly probe how defects affect surface chemical interactions. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.87.155414 |