Multivariate singular spectrum analysis and the road to phase synchronization
We show that multivariate singular spectrum analysis (M-SSA) greatly helps study phase synchronization in a large system of coupled oscillators and in the presence of high observational noise levels. With no need for detailed knowledge of individual subsystems nor any a priori phase definition for e...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-09, Vol.84 (3 Pt 2), p.036206-036206, Article 036206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that multivariate singular spectrum analysis (M-SSA) greatly helps study phase synchronization in a large system of coupled oscillators and in the presence of high observational noise levels. With no need for detailed knowledge of individual subsystems nor any a priori phase definition for each of them, we demonstrate that M-SSA can automatically identify multiple oscillatory modes and detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. As an essential modification of M-SSA, here we introduce variance-maximization (varimax) rotation of the M-SSA eigenvectors to optimally identify synchronized-oscillator clustering. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.84.036206 |