Computational aspects of many-body potentials

We discuss the relative complexity and computational cost of several popular many-body empirical potentials, developed by the materials science community over the past 30 years. The inclusion of more detailed many-body effects has come at a computational cost, but the cost still scales linearly with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2012-05, Vol.37 (5), p.513-521
Hauptverfasser: Plimpton, Steven J., Thompson, Aidan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the relative complexity and computational cost of several popular many-body empirical potentials, developed by the materials science community over the past 30 years. The inclusion of more detailed many-body effects has come at a computational cost, but the cost still scales linearly with the number of atoms modeled. This is enabling very large molecular dynamics simulations with unprecedented atomic-scale fidelity to physical and chemical phenomena. The cost and scalability of the potentials, run in serial and parallel, are benchmarked in the LAMMPS molecular dynamics code. Several recent large calculations performed with these potentials are highlighted to illustrate what is now possible on current supercomputers. We conclude with a brief mention of high-performance computing architecture trends and the research issues they raise for continued potential development and use.
ISSN:0883-7694
1938-1425
DOI:10.1557/mrs.2012.96