Instability induced pressure isotropization in a longitudinally expanding system

In two previous works [K. Dusling, T. Epelbaum, F. Gelis, and R. Venugopalan, Nucl. Phys. A850, 69 (2011); T. Epelbaum and F. Gelis, Nucl. Phys. A872, 210 (2011)], we studied the time evolution of a system of real scalar fields with quartic coupling that shares important features with the color glas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles, fields, gravitation, and cosmology Particles, fields, gravitation, and cosmology, 2012-10, Vol.86 (8), Article 085040
Hauptverfasser: Dusling, Kevin, Epelbaum, Thomas, Gelis, François, Venugopalan, Raju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In two previous works [K. Dusling, T. Epelbaum, F. Gelis, and R. Venugopalan, Nucl. Phys. A850, 69 (2011); T. Epelbaum and F. Gelis, Nucl. Phys. A872, 210 (2011)], we studied the time evolution of a system of real scalar fields with quartic coupling that shares important features with the color glass condensate description of heavy-ion collisions. Our primary objective was to understand how such a system, when initialized with a nonperturbatively large classical field configuration, reaches thermal equilibrium. An essential goal of these works was to highlight the role played by the quantum fluctuations. However, these studies considered only a system confined within a box of fixed volume. In the present paper, we extend this work to a system that expands in the longitudinal direction, thereby, more closely mimicking a heavy-ion collision. We conclude that the microscopic processes that drive the system toward equilibrium are able to keep up with the expansion of the system; the pressure tensor becomes isotropic despite the anisotropic expansion.
ISSN:1550-7998
1550-2368
DOI:10.1103/PhysRevD.86.085040