Rhenium Solubility in Borosilicate Nuclear Waste Glass: Implications for the Processing and Immobilization of Technetium-99
The immobilization of technetium-99 (99Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for 99Tc, in a so...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2012-11, Vol.46 (22), p.12616-12622 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The immobilization of technetium-99 (99Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for 99Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10 000 ppm [by mass, added as KReO4 (Re7+)] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re7+ in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ∼3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since 99Tc concentrations in a glass waste form are predicted to be |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es302734y |