Low temperature laser scanning microscopy of a superconducting radio-frequency cavity
An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2012-03, Vol.83 (3), p.034704-034704-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 034704-12 |
---|---|
container_issue | 3 |
container_start_page | 034704 |
container_title | Review of scientific instruments |
container_volume | 83 |
creator | Ciovati, G. Anlage, Steven M. Baldwin, C. Cheng, G. Flood, R. Jordan, K. Kneisel, P. Morrone, M. Nemes, G. Turlington, L. Wang, H. Wilson, K. Zhang, S. |
description | An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ∼1
μ
Ω at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution. |
doi_str_mv | 10.1063/1.3694570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1039900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963830361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-6facf6b92f37745171ac63596a3b9450db7726e4266b844fba4cb0d8c67d49f3</originalsourceid><addsrcrecordid>eNp1kc1OxCAUhYnR6Di68AVM48a46AiFQrsxMRP_kkncjGtCKSimLRWopm8vTUfjxrthcT9Ozj0HgDMEVwhSfI1WmJYkZ3APLBAsypTRDO-DBYSYpJSR4ggce_8O4-QIHYKjLCM0iz8W4GVjv5Kg2l45EQankkZ45RIvRdeZ7jVpjXTWS9uPidWJSPwQSWm7epBh2jtRG5tqpz4G1ckxkeLThPEEHGjReHW6e5dge3-3XT-mm-eHp_XtJpUEopBSLaSmVZlpzBjJEUNCUpyXVOAquoN1xVhGFckorQpCdCWIrGBdSMpqUmq8BBezrPXBcC9NUPItmuuUDBxBXJYxgSW4nKHe2WjSB94aL1XTiE7ZwfOS4gJDTFEkr2ZyOtk7pXnvTCvcGLX4FDRHfBd0ZM93qkPVqvqX_Ek2AjczMNkSwdjuf7XYAf_TAZ86wN-y6Y4I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963830361</pqid></control><display><type>article</type><title>Low temperature laser scanning microscopy of a superconducting radio-frequency cavity</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Ciovati, G. ; Anlage, Steven M. ; Baldwin, C. ; Cheng, G. ; Flood, R. ; Jordan, K. ; Kneisel, P. ; Morrone, M. ; Nemes, G. ; Turlington, L. ; Wang, H. ; Wilson, K. ; Zhang, S.</creator><creatorcontrib>Ciovati, G. ; Anlage, Steven M. ; Baldwin, C. ; Cheng, G. ; Flood, R. ; Jordan, K. ; Kneisel, P. ; Morrone, M. ; Nemes, G. ; Turlington, L. ; Wang, H. ; Wilson, K. ; Zhang, S. ; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><description>An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ∼1
μ
Ω at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3694570</identifier><identifier>PMID: 22462945</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>cavitation ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; laser beams ; laser resonators ; LASERS ; MICROSCOPY ; MODULATION ; NIOBIUM ; SIGNAL-TO-NOISE RATIO ; SPATIAL RESOLUTION ; surface finishing</subject><ispartof>Review of scientific instruments, 2012-03, Vol.83 (3), p.034704-034704-12</ispartof><rights>2012 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-6facf6b92f37745171ac63596a3b9450db7726e4266b844fba4cb0d8c67d49f3</citedby><cites>FETCH-LOGICAL-c401t-6facf6b92f37745171ac63596a3b9450db7726e4266b844fba4cb0d8c67d49f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3694570$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4497,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22462945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1039900$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciovati, G.</creatorcontrib><creatorcontrib>Anlage, Steven M.</creatorcontrib><creatorcontrib>Baldwin, C.</creatorcontrib><creatorcontrib>Cheng, G.</creatorcontrib><creatorcontrib>Flood, R.</creatorcontrib><creatorcontrib>Jordan, K.</creatorcontrib><creatorcontrib>Kneisel, P.</creatorcontrib><creatorcontrib>Morrone, M.</creatorcontrib><creatorcontrib>Nemes, G.</creatorcontrib><creatorcontrib>Turlington, L.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Wilson, K.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><title>Low temperature laser scanning microscopy of a superconducting radio-frequency cavity</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ∼1
μ
Ω at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.</description><subject>cavitation</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>laser beams</subject><subject>laser resonators</subject><subject>LASERS</subject><subject>MICROSCOPY</subject><subject>MODULATION</subject><subject>NIOBIUM</subject><subject>SIGNAL-TO-NOISE RATIO</subject><subject>SPATIAL RESOLUTION</subject><subject>surface finishing</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kc1OxCAUhYnR6Di68AVM48a46AiFQrsxMRP_kkncjGtCKSimLRWopm8vTUfjxrthcT9Ozj0HgDMEVwhSfI1WmJYkZ3APLBAsypTRDO-DBYSYpJSR4ggce_8O4-QIHYKjLCM0iz8W4GVjv5Kg2l45EQankkZ45RIvRdeZ7jVpjXTWS9uPidWJSPwQSWm7epBh2jtRG5tqpz4G1ckxkeLThPEEHGjReHW6e5dge3-3XT-mm-eHp_XtJpUEopBSLaSmVZlpzBjJEUNCUpyXVOAquoN1xVhGFckorQpCdCWIrGBdSMpqUmq8BBezrPXBcC9NUPItmuuUDBxBXJYxgSW4nKHe2WjSB94aL1XTiE7ZwfOS4gJDTFEkr2ZyOtk7pXnvTCvcGLX4FDRHfBd0ZM93qkPVqvqX_Ek2AjczMNkSwdjuf7XYAf_TAZ86wN-y6Y4I</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Ciovati, G.</creator><creator>Anlage, Steven M.</creator><creator>Baldwin, C.</creator><creator>Cheng, G.</creator><creator>Flood, R.</creator><creator>Jordan, K.</creator><creator>Kneisel, P.</creator><creator>Morrone, M.</creator><creator>Nemes, G.</creator><creator>Turlington, L.</creator><creator>Wang, H.</creator><creator>Wilson, K.</creator><creator>Zhang, S.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20120301</creationdate><title>Low temperature laser scanning microscopy of a superconducting radio-frequency cavity</title><author>Ciovati, G. ; Anlage, Steven M. ; Baldwin, C. ; Cheng, G. ; Flood, R. ; Jordan, K. ; Kneisel, P. ; Morrone, M. ; Nemes, G. ; Turlington, L. ; Wang, H. ; Wilson, K. ; Zhang, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-6facf6b92f37745171ac63596a3b9450db7726e4266b844fba4cb0d8c67d49f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>cavitation</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>laser beams</topic><topic>laser resonators</topic><topic>LASERS</topic><topic>MICROSCOPY</topic><topic>MODULATION</topic><topic>NIOBIUM</topic><topic>SIGNAL-TO-NOISE RATIO</topic><topic>SPATIAL RESOLUTION</topic><topic>surface finishing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciovati, G.</creatorcontrib><creatorcontrib>Anlage, Steven M.</creatorcontrib><creatorcontrib>Baldwin, C.</creatorcontrib><creatorcontrib>Cheng, G.</creatorcontrib><creatorcontrib>Flood, R.</creatorcontrib><creatorcontrib>Jordan, K.</creatorcontrib><creatorcontrib>Kneisel, P.</creatorcontrib><creatorcontrib>Morrone, M.</creatorcontrib><creatorcontrib>Nemes, G.</creatorcontrib><creatorcontrib>Turlington, L.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Wilson, K.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciovati, G.</au><au>Anlage, Steven M.</au><au>Baldwin, C.</au><au>Cheng, G.</au><au>Flood, R.</au><au>Jordan, K.</au><au>Kneisel, P.</au><au>Morrone, M.</au><au>Nemes, G.</au><au>Turlington, L.</au><au>Wang, H.</au><au>Wilson, K.</au><au>Zhang, S.</au><aucorp>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature laser scanning microscopy of a superconducting radio-frequency cavity</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>83</volume><issue>3</issue><spage>034704</spage><epage>034704-12</epage><pages>034704-034704-12</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ∼1
μ
Ω at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>22462945</pmid><doi>10.1063/1.3694570</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2012-03, Vol.83 (3), p.034704-034704-12 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_1039900 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | cavitation INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY laser beams laser resonators LASERS MICROSCOPY MODULATION NIOBIUM SIGNAL-TO-NOISE RATIO SPATIAL RESOLUTION surface finishing |
title | Low temperature laser scanning microscopy of a superconducting radio-frequency cavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20laser%20scanning%20microscopy%20of%20a%20superconducting%20radio-frequency%20cavity&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Ciovati,%20G.&rft.aucorp=Thomas%20Jefferson%20National%20Accelerator%20Facility%20(TJNAF),%20Newport%20News,%20VA%20(United%20States)&rft.date=2012-03-01&rft.volume=83&rft.issue=3&rft.spage=034704&rft.epage=034704-12&rft.pages=034704-034704-12&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3694570&rft_dat=%3Cproquest_osti_%3E963830361%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963830361&rft_id=info:pmid/22462945&rfr_iscdi=true |