Theoretical Investigation of Charge Transfer between N6+ and atomic Hydrogen

Charge transfer due to collisions of ground-state N{sup 6+}(1s{sup 2} S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method, in which the adiabatic potentials and nonadiabatic couplings were obtained using the multire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2011-08, Vol.84 (2)
Hauptverfasser: Wu, Y., Stancil, P C, Liebermann, H. P., Funke, P., Rai, S. N., Buenker, R. J., Schultz, David Robert, Hui, Yawei, Draganic, Ilija N, Havener, Charles C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Charge transfer due to collisions of ground-state N{sup 6+}(1s{sup 2} S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method, in which the adiabatic potentials and nonadiabatic couplings were obtained using the multireference single- and double-excitation configuration-interaction (MRDCI) approach. Total, n-, l-, and S-resolved cross sections have been obtained for energies between 10 meV/u and 10 keV/u. The QMOCC results were compared to available experimental and theoretical data as well as to merged-beams measurements and atomic-orbital close-coupling and classical trajectory Monte Carlo calculations. The accuracy of the QMOCC charge-transfer cross sections was found to be sensitive to the accuracy of the adiabatic potentials and couplings. Consequently, we developed a method to optimize the atomic basis sets used in the MRDCI calculations for highly charged ions. Since cross sections, especially those that are state selective, are necessary input for x-ray emission simulation of heliospheric and Martian exospheric spectra arising from solar wind ion-neutral gas collisions, a recommended set of state-selective cross sections, based on our evaluation of the calculations and measurements, is provided.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.84.022711