Thermotransport in y(bcc) U–Zr alloys: A phase-field model study

Atomic transport in the presence of a temperature gradient, commonly known as thermotransport or the thermomigration phenomenon, was simulated for U-Zr alloys using a phase-field model derived from irreversible thermodynamics. The free energy of the U-Zr system, a necessary ingredient for the phase-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2011-07, Vol.414 (2)
Hauptverfasser: R. R. Mohanty, J. Bush, M. A. Okuniewski, Y. H. Sohn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomic transport in the presence of a temperature gradient, commonly known as thermotransport or the thermomigration phenomenon, was simulated for U-Zr alloys using a phase-field model derived from irreversible thermodynamics. The free energy of the U-Zr system, a necessary ingredient for the phase-field-model, was directly incorporated from the available thermodynamic database. Kinetic parameters such as atomic mobility and heat of transport terms were obtained from experimental values reported in the literature. The model was applied to a single-phase (bcc-y phase) alloy and to a diffusion couple consisting of two single-phase (bcc-y phase) alloys of different compositions, both subjected to a constant temperature gradient. Constituent redistribution in the absence and presence of a compositional gradient was examined. An enrichment of Zr with a corresponding depletion of U was observed at the hot end of the initially homogeneous single-phase alloy. A similar atomic transport behavior was observed in the diffusion couple, where the magnitude and direction of the final composition gradient was dictated by the combined influence of atomic mobility and heat of transport terms.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2011.03.028