High-reflectivity high-resolution X-ray crystal optics with diamonds

Owing to the depth to which hard X-rays penetrate into most materials, it is commonly accepted that the only way to realize hard-X-ray mirrors with near 100% reflectance is under conditions of total external reflection at grazing incidence to a surface. At angles away from grazing incidence, substan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2010-03, Vol.6 (3), p.196-199
Hauptverfasser: Shvyd'ko, Yuri V, Stoupin, Stanislav, Cunsolo, Alessandro, Said, Ayman H, Huang, Xianrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Owing to the depth to which hard X-rays penetrate into most materials, it is commonly accepted that the only way to realize hard-X-ray mirrors with near 100% reflectance is under conditions of total external reflection at grazing incidence to a surface. At angles away from grazing incidence, substantial reflectance of hard X-rays occurs only as a result of constructive interference of the waves scattered from periodically ordered atomic planes in crystals (Bragg diffraction). Theory predicts that even at normal incidence the reflection of X-rays from diamond under the Bragg condition should approach 100%-substantially higher than from any other crystal. Here we demonstrate that commercially produced synthetic diamond crystals do indeed show an unprecedented reflecting power at normal incidence and millielectronvolt-narrow reflection bandwidths for hard X-rays. Bragg diffraction measurements of reflectivity and the energy bandwidth show remarkable agreement with theory. Such properties are valuable to the development of hard-X-ray optics, and could greatly assist the realization of fully coherent X-ray sources, such as X-ray free-electron laser oscillators.
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys1506