Iridium Ziegler-Type Hydrogenation Catalysts Made from [(1,5-COD)Ir( -O2C8H15)]2 and AlEt3: Spectroscopic and Kinetic Evidence for the Irn Species Present and for Nanoparticles as the Fastest Catalyst

Ziegler-type hydrogenation catalysts, those made from a group 8-10 transition metal precatalyst and an AlR{sub 3} cocatalyst, are often used for large scale industrial polymer hydrogenation; note that Ziegler-type hydrogenation catalysts are not the same as Ziegler-Natta polymerization catalysts. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2010-01, Vol.49 (17)
Hauptverfasser: Alley, W., Hamdemir, I, Wang, Q, Frenkel, A, Li, L, Yang, J, Menard, L, Nuzzo, R, Ozkar, S, Finke, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ziegler-type hydrogenation catalysts, those made from a group 8-10 transition metal precatalyst and an AlR{sub 3} cocatalyst, are often used for large scale industrial polymer hydrogenation; note that Ziegler-type hydrogenation catalysts are not the same as Ziegler-Natta polymerization catalysts. A review of prior studies of Ziegler-type hydrogenation catalysts (Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1-27) reveals that a {approx}50 year old problem is identifying the metal species present before, during, and after Ziegler-type hydrogenation catalysis, and which species are the kinetically best, fastest catalysts-that is, which species are the true hydrogenation catalysts. Also of significant interest is whether what we have termed 'Ziegler nanoclusters' are present and what their relative catalytic activity is. Reported herein is the characterization of an Ir Ziegler-type hydrogenation catalyst, a valuable model (vide infra) for the Co-based industrial Ziegler-type hydrogenation catalyst, made from the crystallographically characterized [(1,5-COD)Ir({mu}-O{sub 2}C{sub 8}H{sub 15})]{sub 2} precatalyst plus AlEt{sub 3}. Characterization of this Ir model system is accomplished before and after catalysis using a battery of physical methods including Z-contrast scanning transmission electron microscopy (STEM), high resolution (HR)TEM, and X-ray absorption fine structure (XAFS) spectroscopy. Kinetic studies plus Hg(0) poisoning experiments are then employed to probe which species are the fastest catalysts. The main findings herein are that (i) a combination of the catalyst precursors [(1,5-COD)Ir({mu}-O{sub 2}C{sub 8}H{sub 15})]{sub 2} and AlEt{sub 3} gives catalytically active solutions containing a broad distribution of Ir{sub n} species ranging from monometallic Ir complexes to nanometer scale, noncrystalline Ir{sub n} nanoclusters (up to Ir{sub {approx}100} by Z-contrast STEM) with the estimated mean Ir species being 0.5-0.7 nm, Ir{sub {approx}4-15} clusters considering the similar, but not identical results from the different analytical methods; furthermore, (ii) the mean Ir{sub n} species are practically the same regardless of the Al/Ir ratio employed, suggesting that the observed changes in catalytic activity at different Al/Ir ratios are primarily the result of changes in the form or function of the Al-derived component (and not due to significant AlEt{sub 3}-induced changes in initial Ir{sub n} nuclearity). However (iii), during hydrogenation,
ISSN:0020-1669
1520-510X
DOI:10.1021/ic101237c