A Structure-Based Mechanism for Vesicle Capture by the Multisubunit Tethering Complex Dsl1

Vesicle trafficking requires membrane fusion, mediated by SNARE proteins, and upstream events that probably include “tethering,” an initial long-range attachment between a vesicle and its target organelle. Among the factors proposed to mediate tethering are a set of multisubunit tethering complexes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2009-12, Vol.139 (6), p.1119-1129
Hauptverfasser: Ren, Yi, Yip, Calvin K., Tripathi, Arati, Huie, David, Jeffrey, Philip D., Walz, Thomas, Hughson, Frederick M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vesicle trafficking requires membrane fusion, mediated by SNARE proteins, and upstream events that probably include “tethering,” an initial long-range attachment between a vesicle and its target organelle. Among the factors proposed to mediate tethering are a set of multisubunit tethering complexes (MTCs). The Dsl1 complex, with only three subunits, is the simplest known MTC and is essential for the retrograde traffic of COPI-coated vesicles from the Golgi to the ER. To elucidate structural principles underlying MTC function, we have determined the structure of the Dsl1 complex, revealing a tower containing at its base the binding sites for two ER SNAREs and at its tip a flexible lasso for capturing vesicles. The Dsl1 complex binds to individual SNAREs via their N-terminal regulatory domains and also to assembled SNARE complexes; moreover, it is capable of accelerating SNARE complex assembly. Our results suggest that even the simplest MTC may be capable of orchestrating vesicle capture, uncoating, and fusion.
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2009.11.002