Potential Additives to Promote Seal Swell in Synthetic Fuels and Their Effect on Thermal Stability
Synthetic fuels derived from the Fischer–Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering ground vehicles, aircraft, and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet sp...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2008-03, Vol.22 (2), p.1115-1120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synthetic fuels derived from the Fischer–Tropsch (F-T) process using natural gas or coal-derived synthesis gas as feedstocks can be used for powering ground vehicles, aircraft, and ships. Because of their chemical and physical properties, F-T fuels will probably require additives in order to meet specifications with respect to lubricity and seal swell capability for use in ground and air vehicles. Using both experimental and computational studies, the propensity of certain species to enhance the seal swell characteristics of synthetic fuels and surrogates has been determined, and promising additives have been identified. Important structural characteristics for potential additives, namely an aromatic ring along with a polar constituent, are described. The thermal stability of synthetic and surrogate fuels containing the single-component additive benzyl alcohol, which is representative of this structural class, has been determined by batch stressing of the mixtures at 350 °C for up to 12 h. Synthetic fuels spiked with benzyl alcohol at concentrations (vol %) of 1.0, 0.75, and 0.5 have demonstrated the ability to swell nitrile rubber o-rings to a comparable degree as petroleum jet fuel. Further, batch reactor studies have shown that addition of benzyl alcohol does not degrade the thermal oxidative stability of the fuel based on gravimetric analysis of the solid deposits after stressing. GC-MS was used to characterize the products from thermal stressing of neat and additized surrogate jet fuel, and their compositions were compared with respect to the creation of certain species and their potential effect on deposition. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/ef700569k |