Novel dimerization mode of the human Bcl-2 family protein Bak, a mitochondrial apoptosis regulator
Interactions of Bcl-2 family proteins play a regulatory role in mitochondrial apoptosis. The pro-apoptotic protein Bak resides in the outer mitochondrial membrane, and the formation of Bak homo- or heterodimers is involved in the regulation of apoptosis. The previously reported structure of the huma...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2009-04, Vol.166 (1), p.32-37 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interactions of Bcl-2 family proteins play a regulatory role in mitochondrial apoptosis. The pro-apoptotic protein Bak resides in the outer mitochondrial membrane, and the formation of Bak homo- or heterodimers is involved in the regulation of apoptosis. The previously reported structure of the human Bak protein (residues Glu16–Gly186) revealed that a zinc ion was coordinated with two pairs of Asp160 and His164 residues from the symmetry-related molecules. This zinc-dependent homodimer was regarded as an anti-apoptotic dimer. In the present study, we determined the crystal structure of the human Bak residues Ser23–Asn185 at 2.5Å, and found a distinct type of homodimerization through Cys166 disulfide bridging between the symmetry-related molecules. In the two modes of homodimerization, the molecular interfaces are completely different. In the membrane-targeted model of the S–S bridged dimer, the BH3 motifs are too close to the membrane to interact directly with the anti-apoptotic relatives, such as Bcl-xL. Therefore, the Bak dimer structure reported here may represent a pro-apoptotic mode under oxidized conditions. |
---|---|
ISSN: | 1047-8477 1095-8657 |
DOI: | 10.1016/j.jsb.2008.12.003 |