Estimation of domestic and industrial waste emissions to European waters in the 2010s
Estimation of domestic and industrial emissions to the European fresh and marine waters is needed for assessing current ecological status of water bodies and providing inputs to conceptual models of pollutant transport and fate. Regulatory efforts of the European Commission, particularly Urban Waste...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Estimation of domestic and industrial emissions to the European fresh and marine waters is needed for assessing current ecological status of water bodies and providing inputs to conceptual models of pollutant transport and fate. Regulatory efforts of the European Commission, particularly Urban Waste Water Directive (UWWTD) and Water Framework Directive (WFD) prompted investments in waste treatment, and as a result point source emissions to water bodies have declined. In order to account for these improvements, domestic and industrial emission assessments were to be updated for conditions valid in the 2010s. The aim of this study was to assess the quantity and location of domestic and industrial waste emissions of pollutants in European waters for the 2010s. Specifically, the pollutants considered in this study were total Nitrogen (N), total Phosphorous (P), and organic pollution as measured by 5-days Biochemical Oxygen Demand (BOD). The spatial resolution and extent of the analysis corresponded to the CCM2 River and Catchment Database for Europe. Pollutants were estimated in terms of mean annual average load (t/y) released in the CCM2 catchments. The reference period for the assessment was set to 2014- 2015, although in some cases a longer time period was considered. The assessment of pollutant loads to waters from domestic and industrial emissions made full use of available European databases created in response to EU regulations. A method was developed to exploit the European datasets and fill in content gaps through alternative sources of information (REP approach). The European datasets allowed pinpointing waste emissions to a much higher spatial and conceptual resolution than before, although some knowledge gaps remained, affecting especially emissions from domestic waste of isolated dwellings, small agglomerations, and industries. Outside EU28, Switzerland and Norway, domestic and industrial emissions were assessed based on population density and national statistics of shares of population served by sewerage treatment and per WWTP treatment level (POP approach). The comparison between Population Equivalent generated in agglomerations and reported in the UWWTD database with country resident population allowed estimating an equivalence of 1.23 PE per inhabitant, meaning that on average in Europe the contribution of small industries, commercial activities and tourism can be considered about 23% of waste load generated in agglomerations. This information |
---|---|
ISSN: | 1018-5593 |