GENERALIZING HARDY TYPE INEQUALITIES VIA k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS INVOLVING TWO ORDERS
In this study, We have applied the right operator k-Riemann- Liouville is involving two orders α and β with a positive parameter p > 0, further, the left operator k-Riemann-Liouville is used with the negative parameter p < 0 to introduce a new version related to Hardy-type inequalities. These...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2022, 45(2), , pp.271-280 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, We have applied the right operator k-Riemann- Liouville is involving two orders α and β with a positive parameter p > 0, further, the left operator k-Riemann-Liouville is used with the negative parameter p < 0 to introduce a new version related to Hardy-type inequalities. These inequalities are given and reversed for the cases 0 < p < 1 and p < 0. We then improved and generalized various consequences in the framework of Hardy-type fractional integral inequalities. |
---|---|
ISSN: | 1225-293X 2288-6176 |
DOI: | 10.5831/HMJ.2022.44.2.271 |