Investigation of an Axial Virtual Cathode Oscillator with an Open-Ended Coaxial Cathode
A cathode with an open-ended coaxial structure is experimentally investigated using an axial virtual cathode oscillator (vircator). To enhance the microwave power output, an open-ended coaxial cathode is installed in the axial vircator. The proposed cathode is designed based on the reciprocating fre...
Gespeichert in:
Veröffentlicht in: | Journal of Electromagnetic Engineering and Science 2022, 22(3), , pp.265-271 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cathode with an open-ended coaxial structure is experimentally investigated using an axial virtual cathode oscillator (vircator). To enhance the microwave power output, an open-ended coaxial cathode is installed in the axial vircator. The proposed cathode is designed based on the reciprocating frequency of the vircator. The operation features of an axial vircator with a solid cathode, an annular cathode, and an open-ended coaxial cathode are comparatively analyzed through simulations and experiments. Three cathodes are machined using graphite. A stainless steel mesh with a transparency of 70% is used as an anode. The anode-to-cathode gap is fixed to 6 mm. The vircator is driven using a 10-stage PFN-Marx generator with a characteristic impedance of 31 Ω. The PFN-Marx generator applies -150 kV voltage pulses with a 170–200 ns pulse width into the vircator. The microwave power from the solid and annular cathodes is 11.22 MW and 11.27 MW, respectively. The proposed cathode generates a microwave with a power of 12.65 MW while enhancing the microwave power by 13% compared with the solid and annular cathodes. The proposed cathode shows a frequency shift to 3.4 GHz, which is a much lower frequency than that of the solid cathode at 6.34 GHz. |
---|---|
ISSN: | 2671-7255 2671-7263 |
DOI: | 10.26866/jees.2022.3.r.86 |