Effects of hydrothermal parameters on the physicochemical property and photocatalytic degradation of bisphenol A of Ti-based TiO2 nanomaterials

[Display omitted] •Hydrothermal preparation parameters of Ti-based TiO2 nanomaterials were optimized.•Hydrothermal growth of TiO2 nanomaterials on the Ti plate conformed to Ostwald ripening mechanism.•The optimized TiO2 nanosheets had a high photocatalytic degradation rate of BPA.•TiO2 nanomaterials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial and engineering chemistry (Seoul, Korea) 2022, 109(0), , pp.125-136
Hauptverfasser: Li, Dong, Chen, Yunzhou, Jia, Jialin, He, Haiyang, Shi, Wei, Yu, Jianghua, Ma, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Hydrothermal preparation parameters of Ti-based TiO2 nanomaterials were optimized.•Hydrothermal growth of TiO2 nanomaterials on the Ti plate conformed to Ostwald ripening mechanism.•The optimized TiO2 nanosheets had a high photocatalytic degradation rate of BPA.•TiO2 nanomaterials of designated morphology could be obtained by changing parameters. Effects of hydrothermal parameters on morphology, crystal structure, light absorption, separation efficiency of photo-generated charge carriers, and photocatalytic removal of Bisphenol A (BPA) of Ti-based TiO2 nanomaterials were systematically investigated. Through changing hydrothermal parameters, TiO2 nanobelts, TiO2 nanosheets and TiO2 nanowires were prepared. With increasing NaOH concentration, hydrothermal temperature, and hydrothermal time, more TiO2 with (101) crystal plane grew on Ti substrate, resulting in higher crystallinity. The UV-light absorption enhanced with increasing NaOH concentration, but decreased with improving hydrothermal temperature, hydrothermal time, and HCl concentration. Variation of UV-light absorption was mainly affected by morphology, and UV-light absorption of TiO2 nanomaterials with different morphologies was arranged in order of nanobelts > nanosheets > nanowires. The hydrothermal growth of TiO2 nanomaterials on Ti plate conformed to Ostwald ripening mechanism. Variation trend of photo-generated current was consistent with that of BPA degradation, they both first increased and then decreased within investigated range. The optimal NaOH concentration, hydrothermal temperature, hydrothermal time, and HCl washing concentration were 1 M, 170℃, 28 h, and 0.1 M, respectively. Under this condition, Ti-based TiO2 nanosheets exhibited the highest BPA removal efficiency (92.7%), which was due to highly ordered nanosheet structure, good crystallinity, appropriate UV-light absorption and high separation efficiency of electron-hole pairs.
ISSN:1226-086X
1876-794X
DOI:10.1016/j.jiec.2022.01.032