Strong classification of extensions of classifiable $C^{}$-algebras

We show that certain extensions of classifiable $C^{*}$-algebras are strongly classified by the associated six-term exact sequence in $K$-theory together with the positive cone of $K_{0}$-groups of the ideal and quotient. We use our results to completely classify all unital graph $C^{*}$-algebras wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2022, 59(3), , pp.567-608
Hauptverfasser: Søren Eilers, Gunnar Restorff, Efren Ruiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that certain extensions of classifiable $C^{*}$-algebras are strongly classified by the associated six-term exact sequence in $K$-theory together with the positive cone of $K_{0}$-groups of the ideal and quotient. We use our results to completely classify all unital graph $C^{*}$-algebras with exactly one non-trivial ideal. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b210047