Trace Properties and Integral Domains, III

An integral domain $R$ is an RTP domain (or has the radical trace property) (resp.~an $LTP$ domain) if $I(R:I)$ is a radical ideal for each nonzero noninvertible ideal $I$ (resp.~$I(R:I)R_P=PR_P$ for each minimal prime $P$ of $I(R:I)$). Clearly each RTP domain is an LTP domain, but whether the two a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2022, 59(2), , pp.419-429
Hauptverfasser: Thomas G. Lucas, Abdeslam Mimouni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An integral domain $R$ is an RTP domain (or has the radical trace property) (resp.~an $LTP$ domain) if $I(R:I)$ is a radical ideal for each nonzero noninvertible ideal $I$ (resp.~$I(R:I)R_P=PR_P$ for each minimal prime $P$ of $I(R:I)$). Clearly each RTP domain is an LTP domain, but whether the two are equivalent is open except in certain special cases. In this paper, we study the descent of these notions from particular overrings of $R$ to $R$ itself. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b210322