Trace Properties and Integral Domains, III
An integral domain $R$ is an RTP domain (or has the radical trace property) (resp.~an $LTP$ domain) if $I(R:I)$ is a radical ideal for each nonzero noninvertible ideal $I$ (resp.~$I(R:I)R_P=PR_P$ for each minimal prime $P$ of $I(R:I)$). Clearly each RTP domain is an LTP domain, but whether the two a...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2022, 59(2), , pp.419-429 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An integral domain $R$ is an RTP domain (or has the radical trace property) (resp.~an $LTP$ domain) if $I(R:I)$ is a radical ideal for each nonzero noninvertible ideal $I$ (resp.~$I(R:I)R_P=PR_P$ for each minimal prime $P$ of $I(R:I)$). Clearly each RTP domain is an LTP domain, but whether the two are equivalent is open except in certain special cases. In this paper, we study the descent of these notions from particular overrings of $R$ to $R$ itself. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b210322 |