Crack Detection Based on Generative Adversarial Networks and Deep Learning

This paper proposes a novel crack detection method using the three-stages detection model. Deep learning technology has been a focus of attention in the field of crack detection; however, it needs big data to train the corresponding network model. More training samples and the combination of multipl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSCE Journal of Civil Engineering 2022, 26(4), , pp.1803-1816
Hauptverfasser: Chen, Gongfa, Teng, Shuai, Lin, Mansheng, Yang, Xiaomei, Sun, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel crack detection method using the three-stages detection model. Deep learning technology has been a focus of attention in the field of crack detection; however, it needs big data to train the corresponding network model. More training samples and the combination of multiple deep learning algorithms help to improve the detection performance. Therefore, this paper employed a generative adversarial network (GAN) model to generate abundant virtual crack images with similar features to real images, these virtual images are used to train the CNN classifier and DeepLab_v3+ respectively, and then the real images are used to evaluate the performance of the three-stages detection method. The results show that the proposed three-stages detection method has excellent detection effect on the crack detection is better than that of the control experiment (the NI_MIoU, NI_Accuracy, NI_F-score and NI_MCC are increased by 22.1%–55.6%, 5.2%–9.8%, 37.4%–40.0% and 6.2%–11.1% respectively)). These results demonstrate that the three-stages detection model has made a beneficial contribution to the crack detection.
ISSN:1226-7988
1976-3808
DOI:10.1007/s12205-022-0518-2