Crack Detection Based on Generative Adversarial Networks and Deep Learning
This paper proposes a novel crack detection method using the three-stages detection model. Deep learning technology has been a focus of attention in the field of crack detection; however, it needs big data to train the corresponding network model. More training samples and the combination of multipl...
Gespeichert in:
Veröffentlicht in: | KSCE Journal of Civil Engineering 2022, 26(4), , pp.1803-1816 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel crack detection method using the three-stages detection model. Deep learning technology has been a focus of attention in the field of crack detection; however, it needs big data to train the corresponding network model. More training samples and the combination of multiple deep learning algorithms help to improve the detection performance. Therefore, this paper employed a generative adversarial network (GAN) model to generate abundant virtual crack images with similar features to real images, these virtual images are used to train the CNN classifier and DeepLab_v3+ respectively, and then the real images are used to evaluate the performance of the three-stages detection method. The results show that the proposed three-stages detection method has excellent detection effect on the crack detection is better than that of the control experiment (the NI_MIoU, NI_Accuracy, NI_F-score and NI_MCC are increased by 22.1%–55.6%, 5.2%–9.8%, 37.4%–40.0% and 6.2%–11.1% respectively)). These results demonstrate that the three-stages detection model has made a beneficial contribution to the crack detection. |
---|---|
ISSN: | 1226-7988 1976-3808 |
DOI: | 10.1007/s12205-022-0518-2 |