Primo Vascular Node in the Bone Marrow and Longevity
BackgroundIntra-organic bone marrow node is predicted to be a part of the primo vascular system that plays a critical role in hematopoiesis and generation and regeneration of other cells. Two models of cell regeneration were suggested, one involving DNA synthesis and the other pertaining to DNA recy...
Gespeichert in:
Veröffentlicht in: | Journal of acupuncture and meridian studies 2022, 15(1), 75, pp.12-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BackgroundIntra-organic bone marrow node is predicted to be a part of the primo vascular system that plays a critical role in hematopoiesis and generation and regeneration of other cells. Two models of cell regeneration were suggested, one involving DNA synthesis and the other pertaining to DNA recycling. Objectives: The aim of this work is to extract a primo node from bone marrow, characterize its structure, understand its biochemistry and cell composition, and suggest a cell regeneration mechanism. MethodsPrimo nodes were sampled from segmented halves of the rat femur. We used immunohistochemistry and high-resolution fluorescent microscopy to analyze 1200 samples obtained from 42 rats and 190 primo nodes. ResultsPrimo nodes in the bone marrow have an oval or round structure of about one millimeter in diameter, which is encompassed by a fine capsule, having incoming and outgoing vessels filled with the extracellular matrix and hematopoietic, mesenchymal, endothelial stem cells, as well as cells of the megakaryocyte family found in other primo nodes. ConclusionOur findings imply that bone marrow nodes are intra-organic primo vascular nodes, and they provide ways and approaches for further investigation. Bone marrow nodes are simple to examine ex vivo in a variety of environments to assess cell regeneration mechanisms, wound healing, and organism rejuvenation and lifespan. Further research into these and other intra-organic nodes in animals and humans could lead to new regenerative medicine and longevity strategies that have yet to be discovered. |
---|---|
ISSN: | 2005-2901 2093-8152 |
DOI: | 10.51507/j.jams.2022.15.1.12 |