Microstructural, biochemical and drying characteristics of dehydrated ‘Sunectwentyone’ nectarines as affected by sodium metabisulphite
Nectarine fruit is highly perishable due to its high moisture content (89%) and susceptibility to decay. Continuous degradation in quality attributes due to physiological responses and ripening result ultimately in post-harvest losses. Drying of fruit offers the possibility to minimize losses and ad...
Gespeichert in:
Veröffentlicht in: | Food science and biotechnology 2022, 31(3), , pp.311-322 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nectarine fruit is highly perishable due to its high moisture content (89%) and susceptibility to decay. Continuous degradation in quality attributes due to physiological responses and ripening result ultimately in post-harvest losses. Drying of fruit offers the possibility to minimize losses and add value to fresh produce. Thus, this study evaluated the impacts of sodium metabisulphite (SMB; 10 g/kg) and characterized the influence of hot air (50 °C) drying on the kinetics, fruit tissue microstructure, and the physicochemical properties of dried 'Sunectwentyone' nectarines (Super star®). Out of the nine mathematical models, Logarithmic and Henderson, and Pabis models were the most suitable to predict the drying behaviour of sliced nectarines (
R
2
= 0.94). Based on the microstructural analysis, prolonged drying led to higher tissue displacement/disruption in dehydrated nectarine slices. Results showed that SMB treatment was more effective in maintaining both the freshness and the color of 'Sunectwentyone' nectarine than the untreated.
Graphical abstract |
---|---|
ISSN: | 1226-7708 2092-6456 |
DOI: | 10.1007/s10068-022-01039-6 |