지휘통제 워크플로우 지원 추천 시스템 연구

정보 통신 및 인공지능 기술의 발전은 우리 군의 지휘통제체계의 지능화를 요구하며, 이를 달성하기 위해 다양한 시도가 이루어 지고 있다. 본 논문은 특히, 지휘통제 워크플로우에서 활용 가능한 정보의 양이 폭발적으로 증가함에 따라 지휘통제체계 사용자에게 제공되는 정보 중 수행 업무에 가장 핵심적인 정보를 제공할 수 있는 협업 필터링(Collaborative Filtering, CF) 및 추천 시스템(Recommendation System, RS)에 주목한다. 군 지휘통제체계에서 정보의 필터링을 수행하는 RS는 가장 우선 설명 가능한 추...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2022, 23(1), , pp.125-134
Hauptverfasser: 박규동, Gyudong Park, 전기윤, Gi-yoon Jeon, 손미애, Mye Sohn, 김종모, Jongmo Kim
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:정보 통신 및 인공지능 기술의 발전은 우리 군의 지휘통제체계의 지능화를 요구하며, 이를 달성하기 위해 다양한 시도가 이루어 지고 있다. 본 논문은 특히, 지휘통제 워크플로우에서 활용 가능한 정보의 양이 폭발적으로 증가함에 따라 지휘통제체계 사용자에게 제공되는 정보 중 수행 업무에 가장 핵심적인 정보를 제공할 수 있는 협업 필터링(Collaborative Filtering, CF) 및 추천 시스템(Recommendation System, RS)에 주목한다. 군 지휘통제체계에서 정보의 필터링을 수행하는 RS는 가장 우선 설명 가능한 추천을 수행하여야 하며, 그 다음 지휘관들이 임무를 수행하는 다양한 상황을 고려한 추천이 수행되어야 한다. 본 논문에서는 지휘통제 워크플로우를 지원하기 위하여 정보를 선택적으로 추천하는 contextual pre-filtering CARS 프레임워크를 제안한다. 제안된 프레임워크는 1) 지휘결심자의 상황 및 관계에 기반하여 데이터를 사전에 필터링하는 contextual pre-filtering, 2) CF의 취약한 데이터 희소성 문제를 극복하기 위한 피쳐 선택, 3) 피쳐 간의 디스턴스를 사용자의 유사도 산출에 활용한 CF, 및 4) 사용자의 선호를 반영하기 위한 규칙 기반 포스트 필터링의 4 단계로 구성되어 있다. 본 연구의 우수성을 평가하기 위해서 상용 수준의 실험 데이터셋 2종에 대해 기존 CF 방법의 다양한 디스턴스 방법을 적용하여 비교 실험하였다. 비교 실험 결과 제안된 프레임워크가 3가지 평가지표(MAE, MSE, MSLE) 측면에서 우수함을 나타내었다. The development of information communication and artificial intelligence technology requires the intelligent command and control (C2) system for Korean military, and various studies are attempted to achieve it. In particular, as a volume ofinformation in the C2 workflow increases exponentially, this study pays attention to the collaborative filtering (CF) and recommendation systems (RS) that can provide the essential information for the users of the C2 system has been developed. The RS performing information filtering in the C2 system should provide an explanatory recommendation and consider the context of the tasks and users. In this paper, we propose a contextual pre-filtering CARS framework that recommends information in the C2 workflow. The proposed framework consists of four components: 1) contextual pre-filtering that filters data in advance based on the context and relationship of the users, 2) feature selection to overcome the data sparseness that is a weak point for the CF, 3) the proposed CF with the features distances between the users used to calculate user similarity, and 4) rule-based post filtering to reflect user preferences. In order to evaluate the superiority of this study, various distance methods of the existing CF method were compared to the proposed framework with two experimental datasets in real-world. As a result of comparative experiments, it was shown that the proposed framework was superior in terms of MAE, MSE, and MSLE.
ISSN:1598-0170
2287-1136