Molecular weight distribution modeling of LDPE in a continuous stirred-tank reactor using coupled deterministic and stochastic approach
A hybrid approach that combines the method of moments and Monte Carlo simulation to predict the molecular weight distribution of low-density polyethylene for a continuous stirred tank reactor system is proposed. A ‘Block’, which is repeating reaction group, is introduced for the calculation cost-eff...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2022, 39(3), 264, pp.798-810 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hybrid approach that combines the method of moments and Monte Carlo simulation to predict the molecular weight distribution of low-density polyethylene for a continuous stirred tank reactor system is proposed. A ‘Block’, which is repeating reaction group, is introduced for the calculation cost-effective simulation. This model called the ‘block Kinetic Monte Carlo’ is ∼10 to 32 times faster than Neuhaus’s model. The model can be applied to any steady state system and provide a calculation cost reduction effect, where one reaction is much faster than others, for example, the propagation reaction. Furthermore, we performed a case study on the effects of the system temperature and initiator concentration on the MWD and reaction rate ratio. Based on the simulation results of 180 case studies, we determined a quantitative guideline for the appearance of shoulder, which is a function of the rate ratio of reactions to the propagation reaction. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-021-0943-9 |