Dual Skin-Whitening and Anti-wrinkle Function of Low-Molecular-Weight Fish Collagen

In this study, we investigated the protective effects of low-molecular-weight fish collagen from tilapia against melanogenesis in melanocytes, ultraviolet B (UVB)-irradiated Hs27 skin fibroblasts, and hairless mice. We observed collagen production-related pathways in UVB-irradiated Hs27 skin fibrobl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal food 2022, 25(2), , pp.192-204
Hauptverfasser: Kim, Dakyung, Lee, Minhee, Yang, Joo Hwan, Yang, Joon Sung, Kim, Ok-Kyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we investigated the protective effects of low-molecular-weight fish collagen from tilapia against melanogenesis in melanocytes, ultraviolet B (UVB)-irradiated Hs27 skin fibroblasts, and hairless mice. We observed collagen production-related pathways in UVB-irradiated Hs27 skin fibroblasts and hairless mice, and the melanogenesis-related pathways in melanocyte and UVB-irradiated hairless mice. The collagen production-related pathways were activated in the UVB-irradiated Hs27 skin fibroblasts and hairless mice. In addition, UVB exposure stimulated the melanogenesis-related pathways in melanocytes and hairless mice. However, treatment with low-molecular-weight fish collagen significantly increased the messenger RNA expressions of collagen production-related factors and significantly decreased the production of cytokines. Furthermore, treatment with low-molecular-weight fish collagen suppressed melanogenesis by inhibiting glutathione synthesis and downregulating melanocyte-inducing transcription factor expression through the suppression of cyclic AMP/protein kinase A/cAMP-responsive binding protein signaling and nitric oxide production. Low-molecular-weight fish collagen exerts protective effects against UVB-induced photoaging, through anti-inflammatory, antioxidant, and anti-melanogenesis activities and could be used for developing effective natural anti-photoaging products.
ISSN:1096-620X
1557-7600
DOI:10.1089/jmf.2021.K.0124