Case study on risk evaluation of printed electronics using nanosilver ink
Background With the ever-increasing development of nanotechnology, our society is being surrounded by possible risks related to exposure to manufactured nanomaterials. The consumer market already includes many products that contain silver nanoparticles (AgNPs), including various household products,...
Gespeichert in:
Veröffentlicht in: | Nano convergence 2016, 3(2), , pp.1-7 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
With the ever-increasing development of nanotechnology, our society is being surrounded by possible risks related to exposure to manufactured nanomaterials. The consumer market already includes many products that contain silver nanoparticles (AgNPs), including various household products, such as yoga mats, cutting boards, running shirts, and socks. There is a growing concern over the release of AgNPs in workplaces related to the manufacture and application of nanomaterials.
Objective
This study investigated the release of AgNPs during the operation of a printed electronics printer.
Methods
Using an exposure simulation chamber, a nanoparticle collector, scanning mobility particle sizer (SMPS), condensation particle counter (CPC), dust monitor, and mixed cellulose ester (MCE) filters are all connected to measure the AgNP exposure levels when operating a printed electronics printer.
Results
A very small amount of AgNPs was released during the operation of the printed electronics printer, and the number of AgNPs inside the exposure simulation chamber was lower than that outside background. In addition, when evaluating the potential risks for consumers and workers using a margin of exposure (MOE) approach and target MOE of 1000, the operational results far exceeded the target MOE in this simulation study and in a previous workplace exposure study.
Conclusion
The overall results indicate a no-risk concern level in the case of printed electronics using nanosilver ink. |
---|---|
ISSN: | 2196-5404 2196-5404 |
DOI: | 10.1186/s40580-016-0065-y |