Applications of artificial neural network and Box-Behnken Design for modelling malachite green dye degradation from textile effluents using TiO2 photocatalyst
Most of the photocatalytic studies for pollutant degradation are based on optimizing a single parameter that results in a non-linear relationship between the overall parameters and the photo-degradation reactions. To address this critical problem, herein, we report the use of Response Surface Method...
Gespeichert in:
Veröffentlicht in: | Environmental engineering research 2022, 27(1), , pp.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most of the photocatalytic studies for pollutant degradation are based on optimizing a single parameter that results in a non-linear relationship between the overall parameters and the photo-degradation reactions. To address this critical problem, herein, we report the use of Response Surface Methodology based on the Box-Behnken Design (BBD) for modeling the photocatalysis degradation of Malachite Green (MG) dye using nano TiO2 as photocatalyst. The catalyst characterizations are carried out using XRD, SEM, and TEM, indicating that the TiO2 prepared by sol-gel synthesis possesses Anatase phase with particles in the nano regime and porous surface morphology. The optimum operating conditions for degradation of MG was identified by the interactive effects of variable factors such as initial dye concentration 10-30 ppm (x1), catalyst dosage 1-3 mg (x2), contact time 20-60 min (x3) using the Box-Behnken method. Furthermore, the degradation reactions are also evaluated by Artificial Neural Networks (ANN). Their predicted results have been validated by the experimental studies and found to be acceptable. Their optimal results to achieve 90% degradation efficiency at TiO2 nanoparticle dosage (3 mg), reaction time (60 min), and initial dye concentration (20 ppm) have been validated by the experimental studies and found to be acceptable. |
---|---|
ISSN: | 1226-1025 2005-968X |
DOI: | 10.4491/eer.2020.553 |