Sasakian 3-Metric as a $\ast$-Conformal Ricci Soliton Represents a Berger Sphere
In this article, the notion of $\ast$-conformal Ricci soliton is defined as a self similar solution of the $\ast$-conformal Ricci flow. A Sasakian 3-metric satisfying the $\ast$-conformal Ricci soliton is completely classified under certain conditions on the soliton vector field. We establish a rela...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2022, 59(1), , pp.101-110 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, the notion of $\ast$-conformal Ricci soliton is defined as a self similar solution of the $\ast$-conformal Ricci flow. A Sasakian 3-metric satisfying the $\ast$-conformal Ricci soliton is completely classified under certain conditions on the soliton vector field. We establish a relation with Fano manifolds and proves a homothety between the Sasakian 3-metric and the Berger Sphere. Also, the potential vector field $V$ is a harmonic infinitesimal automorphism of the contact metric structure. KCI Citation Count: 1 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b210125 |