Sasakian 3-Metric as a $\ast$-Conformal Ricci Soliton Represents a Berger Sphere

In this article, the notion of $\ast$-conformal Ricci soliton is defined as a self similar solution of the $\ast$-conformal Ricci flow. A Sasakian 3-metric satisfying the $\ast$-conformal Ricci soliton is completely classified under certain conditions on the soliton vector field. We establish a rela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2022, 59(1), , pp.101-110
1. Verfasser: Dibakar Dey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the notion of $\ast$-conformal Ricci soliton is defined as a self similar solution of the $\ast$-conformal Ricci flow. A Sasakian 3-metric satisfying the $\ast$-conformal Ricci soliton is completely classified under certain conditions on the soliton vector field. We establish a relation with Fano manifolds and proves a homothety between the Sasakian 3-metric and the Berger Sphere. Also, the potential vector field $V$ is a harmonic infinitesimal automorphism of the contact metric structure. KCI Citation Count: 1
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b210125