머신러닝 모델을 이용한 석산 개발 발파진동 예측

In this study, a model was developed to predict the peak particle velocity (PPV) that affects people and the surrounding environment during blasting. Four machine learning models using the k-nearest neighbors (kNN), classification and regression tree (CART), support vector regression (SVR), and part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:터널과 지하공간, 31(6) 2021, 31(6), 155, pp.508-519
Hauptverfasser: 정다희(Dahee Jung), 최요순(Yosoon Choi)
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a model was developed to predict the peak particle velocity (PPV) that affects people and the surrounding environment during blasting. Four machine learning models using the k-nearest neighbors (kNN), classification and regression tree (CART), support vector regression (SVR), and particle swarm optimization (PSO)-SVR algorithms were developed and compared with each other to predict the PPV. Mt. Yogmang located in Changwon-si, Gyeongsangnam-do was selected as a study area, and 1048 blasting data were acquired to train the machine learning models. The blasting data consisted of hole length, burden, spacing, maximum charge per delay, powder factor, number of holes, ratio of emulsion, monitoring distance and PPV. To evaluate the performance of the trained models, the mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were used. The PSO-SVR model showed superior performance with MAE, MSE and RMSE of 0.0348, 0.0021 and 0.0458, respectively. Finally, a method was proposed to predict the degree of influence on the surrounding environment using the developed machine learning models. 본 연구에서는 발파 시 사람과 주변 환경에 영향을 끼치는 발파진동(peak particle velocity, PPV)을 예측하는 모델을 개발하였다. PPV를 예측하기 위해 kNN(k-nearest neighbors), CART(classification and regression tree), SVR(support vector regression), PSO(particle swarm optimization)-SVR 알고리즘을 이용한 4가지 머신러닝 모델을 개발하고 상호 비교하였다. 머신러닝 모델을 훈련하기 위해 경상남도 창원시에 있는 욕망산을 연구지역으로 선정하고 1048개의 발파 데이터를 획득하였다. 발파 데이터는 천공장, 저항선, 공간격, 최대지발장약량, 비장약량, 총공수, 에멀전비율, 이격거리, PPV로 구성되었다. 훈련된 모델들의 성능을 평가하기 위한 지표 값으로 MAE(mean absolute error), MSE(mean squared error), RMSE(root mean squared error)를 사용하였다. 평가결과 PSO-SVR 모델이 MAE, MSE, RMSE가 각각 0.0348, 0.0021, 0.0458으로 가장 우수한 예측 성능을 나타냈다. 마지막으로 개발된 머신러닝 모델을 이용하여 주변 환경에 영향을 끼치는 정도를 예측하는 방법을 제시하였다.
ISSN:1225-1275
2287-1748